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ON A PROBLEM OF CHOWLA AND SOME
RELATED PROBLEMS

By PAUL ERDOS
[Communicated by Prof. G. H. HarDY]
[Received 21 March, read 26 October 1936]

Let d (m) denote the number of divisors of the integer m. Chowla has conjectured
that the integers for which d (m + 1) > d (m) have density 4. In this paper I prove
and generalize this conjecture. I prove in § 1 a corresponding result for a general
class of functions f(m), and in § 2 the result for d (m) which is not included among
the f(m). I employ the method used in my paper: “On the density of some

sequences of numbers.” *

1. The functions f (m) and ¢ (m) are called additive and multiplicative respec-

tively if they are defined for non-negative integers m, and if, for (m,, my)=1,
f (mymy) =f (my) +f (my),
¢ (mymy) = (my) § (my).

We suppose throughout that f(m)>0, ¢ (m)> 1.

If ¢ (m) is multiplicative, log ¢ (m) is evidently additive, so that it will suffice
to consider additive functions only.

We denote by G (f,n) the number of integers m <= for which f(m + 1) = f(m),
and by S(f,n) the number for which f(m+ 1) <f(m). We suppose throughout
that » is a sufficiently large integer and that the ¢’s are absolute constants.

First we prove the following

THEOREM: Let the additive function f(m) > 0 satisfy the following condition :

X f% converges when the summation is extended to all primes p. Then

tim SOM_y M
> T
n—>wm

We prove that lim gg’ :; =1, and that the number of integers m <n for

which f(m+1)=f(m) is o (n), i.e. the number of integers belonging both to the
set G and to the set §is o(n).
* Journal London Math. Soc. 10 (1935), 120-125.
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The method will be more intelligible if we consider first the special case in
which f(p*)=f(p) for any integral exponent =, so that

J(m) =paf(ﬁ)-
Consider also the function f; (m)= 3, f(p),
Blm

PEDR
where p;, denotes the kth prime.
. G (fin)
We show first that lim — =1.
n—>w ‘S (f k> n)

Let us denote by @, a5, ... the square-free integers whose prime factors are
all less than or equal to p,, and by @ (m) the greatest a; contained in m. Evidently

Ji(m)=fla (m)].
By ¢ (n, a;, a;) we denote the number of integers m <= such that a (m)=a,,
a(m+1)=a;. Evidently ¢ (n, a;, a;) =0 if (a;, a;) # 1.
We obtain ¢ (n, a;, a;) by taking all integers m <= for which a;|m but ptm
if p < pj, unless p|a;; and a;| (m+ 1) but pf (m+1) if p < p;, unless p|a;.
With these conditions we find by the sieve of Eratosthenes and omission of
the square brackets

n 2 n 2
11 (1-——)—-22"< R, Gy, 0) < —— (1——)4—2”6;
Qi p<pi P b (. 0, ) a’iajplgm P
plagy ptaa;
and similarly (3)
n 2 n 2
I (1——)—2”‘< M, Qs @;) < (1——)+22".
;@i p<py P ¥ (. a5, ;) a';“jpgm p
ptaay ptaey
From these lim N, Oy, ) 1. (4)
— o l,tf(’ﬂ:, aj: ai)
Since G(fy,n)= X d(n, a4 a),

Fla)<flay)
and similarly

S(fk:n)= 2 !!’(n) ;s a‘j)= 2 ‘lb(n: a;, a;),

Fla) =21 (aj) Flai)<flaj)
. G(fy,n)
we have, by (4), 111_{[:3 S~ 1.
We now prove that, for every > 0, a k exists so great that, if n>n (e),

| G (f,n)— G (fi, n) | <en, (5)

and similarly | S (f, ) =8 (fi, ) | < en. (6)
. G(f,n) . .
F these lim ——<— =1 follows immediately.
e " ﬂ—»wS(f: n) y

We require two lemmas.
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LemMA 1. For every e we can find a number 8 such that, if v is the number of
integers m <n for which | fi, (m+1)—f;. (n) | <3, then v < }en for k >k (¢).

We have evidently v= XX ¥(n a,aq). (7)
lﬂaf&f(::-)l <8
We now split the sum (7) into two parts 3, and X,, 3, containing those a;’s

and a;’s for which TJ (1 - f)) <e Ve and ¥, all the other a;’s and a;s.

plaigy
p#2

First we evaluate 3.
3, is evidently less than or equal to the number y of integers m <z for which

)
gm)=TI (1——]<e—ﬂ€’.
plm(m+1) P
DEPr
p#2

n 2 3
Consider now the product: [] g (m)< e #<. The factor 1 ~% for given p occurs

m=1

at most [;:l + [%] < 2—; times and so (really by Legendre’s argument)

ﬁ g(m)= 11 (l—g)znm: I 1(1“;)mr>c_1;a‘

m=1 PEPr p P=px {
n#+2 p#2
.. 1
Thus eHE S —
q
hence Yisu<enloge,.

We now split 3, into two parts 35 and 33, where X5 contains only those a;’s
and a;’s for which a;a; > p}i<.
3 is less than or equal to the number p of the integers m < n for which

A (m)=a(m)a(m+1)>ple.
By Legendre’s argument, we have

ﬁ A (m)< I p*™? =exp (2n % M) < pEn,

=1 pP=pr PEDPE
. 1
gince > PR ¢, log py.
DDk
Hence pzfs‘ <pn,
thus Fa < p<2c,ned.

Finally, we have to evaluate 3.
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2
For the a;’s and a,’s oceurring in ¥, we have, from [] (1 _E’) <E ‘s

s 2 PEPE io—g-p—k)ﬂ’
omitting the terms for which [] (l - —) g,
plaia; p
P2
2 Cq el,.e
1 (1-2) <oz
P<Dr p) ~(log pp)*
plaia;

Hence from (3) since a;, a; can each at most take 2% values,

' ("'3 n61,-'52 7 r iy nelkg r r 1
= 3N + 2o ——— P ——
(logpp)* & & (logpe)* & & @9

| flap—flan]| <8 1fla)—F(a)| <8

The dash in the summation formulae means that the summation runs only over

the a,;’s and a;’s for which a,a; < pj/< and [] (1~j—§)>e—1f‘2.

plaiay
P=PE

We now prove that n .

E 'Y <o (log py)t (8)
a4 @
| Fla)—fa)]<d
3 ; 1
First we estimate the sum b — for fixed ;.

| £ ap—F (an)] <8 5
We obtain in exactly the same way as in Lemma 1 of my paper® “On the

density of some sequences of numbers” that for /> ¢, the number of integers
m <1 for which | f(m)—f(a;) | <8 is less than e*¢~V<'l. Hence

1 1 1 1
¥ <l tat— —{—648_“‘2( +onit iz )
1 (a) =T (el <d @ Ce ¢y + o ) cy+2 [p%<]

Iog Pr

< 2log cg+ ete Vet T—=2F < ¢ eV log py. .

. 1 1 :
Since ¥— =TI (l + —-) < cglog py,, (8) is proved. From (8), we have
a; @ pspr\ P
3o <cge’n.
And finally V=3,+35+34 <en(loge, + 2¢,+¢y) < fen.
LeMMA 2. There are at most Len integers m<n for which at least one of the
inequalities
7 Fm)—fi(m)>3, fm+1)—fi(m+1)>3
holds for sufficiently large k=k (€).
* The lemma asserts that for every e we can find a § such that the number of integers

m<n for which ¢e<f(m)<e+ 8 is less than en. See also my paper ““On the density of some
sequences of numbers, 11", which will appear shortly in the Journal of the London Math. Soc.
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For clearly
n o
5 (fm)—fi o)} = [ ] Soten 3 T g,
== P=Pk+1 P=Di+1
since E‘f(p ) converges. Hence the lemma is proved.

“e proceed to prove (5) and (6). It will be sufficient to prove that the
number of integers m < n, for which f, (m + 1) —f, (m) is not of the same sign as
J(m+1)—f(m), is less than en.

We split these integers into two classes. In the first class are those for which
| fo(m+1)—f;(m)]| <8. By Lemma 1, the number of these is less than }en. For
the integers of the second class | f,. (m+1)—f, (m) | >38. For these, evidently one
of the inequalities f (m) — f;, (m) > 8, f (m + 1) — f,. (m + 1) > 8 holds. Thus by Lemma
2 their number is also less than }en, and so (5) is proved.

We now have to show that there are only o(n) integers m <n for which
Fm)=f@m+1).

The argument is exactly the same as the one above. We split the integers
m<n with f(m)=f(m + 1) into two classes, putting into the first those for which
| fi (m+1)—f,.(m)| <8. By Lemma 1, it follows that their number is less than
$en. For the integers of the second class | fi,(m+1)—f,(m)|>8, so that one
of the inequalities f(m)—f, (m) >3, f(m+1)~f; (m+1)>3 holds; hence, from
Lemma 2, their number is less than len.

Hence the Theorem is completely proved for the special case f(p*)=f(p).
The transition to the general case when f(p*)#f(p) is so simple that it will
suffice to outline the proof. We define

Je(m)= 3 f(pf), where pi[m, pittim
Di<Dk

Then the proof runs just as in the special case if we note that there are at

most ¢,,n/p;, integers m < n divisible by a square greater than p,, since

cmn
f>2m 2
We now take for f(m) the functions ( } and , where o (m) denotes the

(#()

sum of the divisors of m and ¢ (m) denot-es Euler’s function. We can then deduce
the theorem that the number of integers m <n, for which ¢ (m+1)>0c(m), is
asymptotically in; the same is true for ¢ (), since we can easily deduce from
Lemmas 1 and 2 that there are only o (n) integers m <z for which the sign of

o(m) o(m+1). :
hicld W R t ; sty ;
= il is not the same as the sign of o (m)—o (m + 1)

The same theorem holds for the slightly more general case when ¥ —-
Vg

f(p) o
P
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not converge but the primes can be splitinto two classes, ¢,’sand ¢,’s, so thateach of

the series Ewi) and X L converges and can be proved in a similar way.

wn 91 a 92
2. Now we come to d (m). Denote by ¥ (m) the number of the different prime
factors of m. Denote by G (V,n) and 8 (V,n) the number of integers m <n, for
which V (m)<V (m+1) and V (m) =V (m+ 1) respectively. We prove that

g SV (9)
and lim —S—(Zﬂ =1 (10)

If we use the method of §1 without any modification, denoting by V3, (m)
the number of different primes not greater than p, dividing m, we come to no
result, since Lemma 2 breaks down. We must take t as a function of =,

1
e.g. k=mndoglogn?
We give the particulars of the proof only where it differs essentially from the

argument used in § 1.
. . GV, n)
First we show that il_li R 1. (11)
Let us denote again by a,, as, ..., @, the square-free integers whose only factors
are primes not greater than k&, and by a (m) the greatest a, contained in m. Evi-
dently ¥, (m) =V [a (m)].
We may show exactly as in Lemma 1 of § 1 that the number of integers m <=,

N S
for which a (m)a (m + 1) > nos10g ™* is o (n).
1

We consider now the number of the m’s, for which & (m) a (m 4+ 1) < nlos log )%,

We denote by ¢ (n, a;, @;) the number of integers m <% such that a (m)=q,
and a (m+ 1) =a;.

We evaluate ¢ (n, a;, @;) by Brun’s method. As in §1, we obtain # (. a;, ;)
by taking all integers m <= for which a;|m but pfm if p<k and pte; and
a;|m+1but pfm+1lifp<kandp|a;.

Let now py, P, ..., p; be any [ primes not dividing a,a;. Denote by

sl
;@i P1Pg e P

the number of integers m <= for which a;a; | m and

m=0 or —1 {mod p,),
m=0 or —1 {(mod p,),

...............
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We evidently have

n.2 n.2 f n.2!
—— -2 < +
;&P Po - Py APy P Py ;AP Po -+ Py
Now, by the sieve of Eratosthenes, we obtain

poman =T |- | e o *
MRS a,a; AP a;a;p " Lasapips

oy, *
e | ==
* )lz[asajpmg---pz] Frdda

where the summation refers to all sets of { primes all less than % no two of which
are equal, and no one of which divides a,a;.

2
We write S=2 —L s
QD1 Py e Py
21 !
and §=3 i : ] ’
;A P1Pg - Py

Let 2t—1 be the least odd integer greater than 10loglogn, then, following
Landau’s argument (Vorlesungen sber Zahlentheorie, 1, 75), we obtain

2{—1 2t
21 (_ 1)£65“{‘-¢ (?’b, @y, a;')< J.’Zl (_1)335'

By omitting the square brackets on both sides, we get

2t—1
521 (= 1)ls;— 21010glogn+1 (1 4 k)l0loglogntl < of (n, a;, a;)

2t
< 2 (_ 1)"'83—!— 210loglog n+2 (1 +k)10 loglogn+2’
=1

since the number of terms in s;is less than (f) and

e (5 () oot (£) <ram

2! ( 3 l)t
n T mskPi

Now Y §<

1>10loglogn @;&; 1> 10 log log n Al
n (2loglogn) 2n (2loglogn)*
= —=2 = B
;i 1>10 log logn 1! a;a; h! i

h being the least integer exceeding 10loglogn. Since 1/A! < hte",
2n (2loglogn)t - E@_ (21og log n)1010g10g n-+1 g1010g log 7-+1

1> 1010g10gn8l ;0 " a;a; (101og log n)'0108 logn
2n [2e\10loglogn
- i 2elog]
aiaj(lo) oglogm
20 {3 10log log n n
<—(—) 2eloglogn < ————.
a;a;\5 a;a; (logn)?
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Hence
—
a;a; (logn)?

< Z {__ 1).! 3£+21010g10g n+2 (]_ +k)10103 log n+2 +
i

}I_“ ( — 1){ 85— 210l0glog o+l (1 + k}ll}log log n+l < "b (n a;, aj)

¥
a;a;(logn)®’
where the summation refers to all possible values of /, and so the sum is finite
since there are only a finite number of primes not exceeding . But

2 n 1
Z(—l)‘s e ( )}—-_— — 12
1 == @ pl;Ik p] "~ a;a; (logn)? (12)
plaia;
1 1
and, since a,a;<nloslogn  and k< niloeloz P
we have
n 2 2n n 2 2
= ]I (1__‘)"_—__‘_”"3‘(‘1[’(”:%,‘15) (1——~)+-—ﬂ-’—~~3-
;a5 p<i p/ a;a;(logn) A0 por p] " a.a;(logn)
piaa; DTty

Thus from (12)

i 2 2 n 2 B
@;0; ;ul;l:c (1_5) (I_IDgﬂ)<¢(n % aj)cT@_j :nl;Ik (IHE) (1+fb§?1)' (13)

ptaa; Diaig;
Similarly
n 2 2 n 2 2
e 1L (1=3) (1= o) <pman ar<gl M (1-7) (14i;)- a9
Praiy ploig;
4 ':!' ("” Qs a’j) 4
Hence ﬁna]ly _logn+2 41(”, aj,ui) 1+]0gn_2- (15}
Now G(V > n)_—' > ')('(ﬂ" @y aj)'!‘o(n);
Fla)<1 (@)
aiay<nioFoEn
and SWVi,n)= X $(n,a; a)+o0(n).
S@)<1ap
i< nIE0E"
- G (Vk) ﬂ’]
Thus from (15) Tffalo ST m)" =1,
and so (11) is proved.
Now similarly, as in (5), we prove that
|G(V,n)— GV, n)|<en, (16)
and [ S(V,n)—8 Vi, n)|<en, (17)

by the aid of two lemmas.
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LemMMA 3. The number v' of integers m <n for which
[V (m+ 1) =V, (m) | < (log log log n)*
s 0 (n).
We have, asin §1,
v'= E E ¢(n: a{?ajJ' (18)
o o
¥ (a)— ¥ ()| < (log log log n)*

From (13) we obtain

et ( 2)
n, d;, &) <—— 1—-). 19
¥ i) a;d; pl;lk P L
ptaay

We detail the proof of Lemma 3, since this is the most complicated part of § 2;
nevertheless it will be seen that it is very similar to the proof of Lemma 1 in § 1.
We split the sum (18) into two parts 3}, and ¥,, 3, containing only those a,’s
2
and a;’s for which [] (l ——|< -and ¥, all the other ¢;’s and a;'s.

1
plaia p) logloglogn
n+2

¥, evidently does not exceed the number ' of integers m <, for which
2 1
m)= 1‘-_) < — :
Ziml plm(l;lwn( p] “logloglogn
p<k
p#2

Now, by Legendre’s argument,
n 2\ 2n/p 2\ 2pTn
i gm> 1 (1-2)" = 1 [ (127 ]"

m=1 p<k p<k P
pA2 P72
: 1 1
T (logloglog n)* 7 c@ ’
; nloge;,,
hence Lisps log log log laz)g:i't._0 tl;

Finally we evaluate ¥,.
For the a;’s and a;’s occurring in ¥,, we have, since [] (1_3) <(1§g13k)2’

p=k
from the definition of ¥,

1 (1 _E) T loglog logn= ¢qzlogloglogn (loglogn)“.
Pk P (logk)® (logn)?
ptaas
Hence, from (18) and (19),
6
o <01310g10g10gn(loglogn) s ¥ ;:a,_ . (20)

(logm)* a;a;

LA
17 (a;)— V(@) < (log log log n)*
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1
First we estimate the sum > — for fixed a;.
1V (@) —V(an)| <(loglog log n)* &;
We require the sum of the reciprocal value R of the ¢’s which have exactly

© prime factors.
We evidently have

1 v
R< (pg‘kﬁ)  (loglogk+ecy,)® (loglogk+c,,)?
! v! ki q!

where ¢q denotes the greatest integer not exceeding loglogk+¢,,.
Further, by Stirling’s formula,

2

(loglog k + ¢,4)? €2 log log n
Bow ™= qgi— — <°u{loglogk)t ~ ™ {loglogn)™®’
a e
since (loglog b+ cyy)° loggf +°10) < ( 1+ c—;) <Cyg-
Hence summing for v, which runs through 2 (logloglog n)* values, we get
1 logn (loglog log n)4
— < 2¢44 7
|7 a)— V(@] <(log loglog m)* &; (loglog =)
; 1 1 clogn
sinc Ta I (4 g) <enlont= gioge
we have, on multiplying the two right-hand sides just above,
sy 1 (logn)? (loglog log n)*
@ a aa; % (loglogm)t®® -
|V (a;)— Flai)| <(log log log n)*
F this by (20 =0 (M—o(n)'
rom 18 by ( ) 2= ¥21 (loglogn)m - t
hence finally V=3,+Y.=0(n).

Levma 4. There are only o (n) integers m < n, for which one of the inequalities
V (m) =V}, (m) > (logloglogn)?, V (m+ 1)V} (m+ 1) > (log loglogn)? holds.

The proof runs parallel to that of Lemma 2 in the first part. Just as we obtained
(5) and (6) from Lemmas 1 and 2, so we derive (16) and (17) from Lemmas 3
and 4.

From (11), (16) and (17), it follows that

G(V,m)_,

e TS

By Lemmas 3 and 4 we can show, as in § 1, that there are only o (») integers
m <n for which V (m)=V (m+1). From this we deduce

i FTW_ g STom)

= n =0 n
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To obtain Chowla’s conjecture, we need only prove that there are o(n)
integers m<n for which V(m+1)—V (m)=20 and d(m+1)—d(m)<0, or
Fim+1)—V (m)<0 and d (m+ 1)—d (m) = 0. It will be sufficient to settle the
first case.

First we observe that it is easy to obtain from Lemmas 3 and 4 that for almost

all integers* m<n, |V(m+1)—V (m)|> (logloglogn)2

We now split the integers for which both V(m+1)—V (m)>0 and
d (m+ 1)—d (m) < 0 into two classes, putting in the first those for which

Vi{m+1)—V (m) < (logloglog n)?,
and in the second those for which
V(m+1)—V (m) = (loglog log n)2.

The number of the integers of the first class is o (n), by the remark above.

3 . Q¥ (m+1) .
The integers of the second class satisfy Ve > 20ogloglogn?  and since

d(m+1)> 27D we have d(m)> 270w 20egloglosnt®  Put m=A B2 where 4 is
square-free. We have d (m) <d (4)d (B?) = 2™ d (B?), so that d (B?) > 20ogloglogn?
and hence B2z 20cgloglozn Thug s is divisible by a square not less than
200gloglos ®F g that the number of integers of the second class is less than equal to

n
=0 (").
T8> 20los Lo log n)? 12 ( )

Hence the result.

* More generally we can prove the following theorem. Let X (n) be an arbitrary function
with lim X (n)=rcc. Then, for almost all integers m <n,

n—ro0

loglogn
X (n)

The first inequality may be proved by similar but stronger lemmas than Lemmas 3 and 4.
The second inequality has been proved by P. Turén as follows:

<|V(im+1)=V (m)| <loglognX (n).

}E (Vim+1)—1(m))*= i“, {V (m+1)=loglogn)—(V (m)—loglogn)}*
1

m=1 m=

<2 5 (V{m)—loglogn)*+ % (V(m+1)—log logn)“:’
m=1

m=1
=0 (nloglogn),

which immediately establishes the result.




