ON THE ASYMPTOTIC DENSITY OF THE SUM OF TWO SEQUENCES ONE OF WHICH FORMS A BASIS FOR THE INTEGERS. II.

BY PAUL ERDÖS (Manchester)

Let a_1, a_2, \ldots be any sequence of positive steadily increasing integers, and suppose there are x = f(n) of them not exceeding a given number n, so that

 $a_x \cong n < a_{x+1}$.

The Schnirelmann density δ of the sequence is defined as the lower bound of the numbers f(n)/n; n=1, 2, ... Thus, if $a_1 \neq 1$, $\delta = 0$. Clearly $f(n) \ge \delta n$.

The asymptotic density δ_a of the sequence is defined as $\lim_{n\to\infty} \inf f(n)/n$.

Suppose also that the steadily increasing set of positive integers

 $A_0 = 0, A_1, A_2, \dots$

form a basis of order l of the positive integers. This means that every positive integer can be expressed as the sum of at most l of the A's.

In a previous paper¹, I proved the following

Theorem. If δ is the Schnirelmann density of the sequence a + A, i. e. of the integers which can be expressed as the sum of an a and an A, then

$$\delta' \geq \delta' + \frac{\delta(1-\delta)}{2l}$$

In § 1 of the present paper I prove the following

Theorem. Let $a_1 < a_2 < ...$ be a sequence of positive integers of asymptotic density $\mathfrak{d}_{\mathfrak{a}}$. Let $A_0 = 0$, $A_1 < A_2 < ...$ be a sequence of positive integers such that for every $\mathfrak{a} > 0$, an M exists so that every integer $m \ge M$ is the sum of at most l positive and negative A's, where the absolute value of the negative A's is less than $\mathfrak{e}m$. Then, if $\mathfrak{d}'_{\mathfrak{a}}$ is the asymptotic density of the sequence $\mathfrak{a} + A$,

$$\delta'_a \geq \delta_a + \frac{\delta_a(1-\delta_a)}{2l}.$$

 $^{^1}$ «On the arithmetical density of the sum of two sequences one of which forms a basis for the integers». Acta Arithmetica 1 (1936), 197–200. I shall refer to this paper as I.

In § 2, by aid of this result, I prove that every large integer is the sum of two primes and a bounded number of squares of primes. This may be contrasted with the result proved in a previous paper², that every integer is the sum of a bounded number of positive and negative squares of primes. It was conjectured that every large integer is the sum of a bounded number of positive squares of primes³.

In § 3, I consider results analogous to the following theorem of Khintchine: Let $a_0 = 0 < a_1 < ..., \quad b_0 = 0 < b_1 < ...$ be two sequences of Schnirelmann density $\delta \leq \frac{1}{2}$, then the Schnirelmann density of the sequence a+b is $\geq 2\delta$.

Dr Heilbronn and I conjectured that if $a_0=0$, $a_1=1 < a_2 < ...$, and $b_0=0$, $b_1=1 < b_2 < ...$, are two sequences of asymptotic density $\hat{o}_a \leq \frac{1}{2}$, then the asymptotic density of the sequence a+b is $\geq \frac{3}{2}\hat{o}_a$. I prove this conjecture

ture in the special case when the two sequences a and b are identical, i. e. the following Theorem. Let $a_0=0$, $a_1=1 < a_2 < \dots$ be a sequence of integers of

asymptotic density $\delta_a \ge \frac{1}{2}$, then for the asymptotic density δ'_a of the sequence $a_i + a_j$,

$$\delta'_{i} \geq \frac{3}{2} \delta_{a}.$$

On the other hand, it is easy to see that if $\tilde{z}_a > \frac{1}{2}$, every sufficiently large integer is of the form $a_i + a_j$ i.e. the asymptotic density of the sequence $a_i + a_j$ is I.

It is easy to see that this theorem is best possible. For let a_0, a_1, a_2, \ldots be all the integers $\equiv 0$, or 1 (mod 4). The asymptotic density of this sequence is 1/2. The sequence $a_i + a_j$ consists of the integers $\equiv 0,1$ or 2 (mod 4) and its asymptotic density is 3/4. This example is due to Dr Heilbronn.

§ I

The argument of this chapter is very similar to that of I. As there, we prove our theorem as a particular case of a more general one. Let n be sufficiently large and let the positive integers $\leq n$ not included among the a's be denoted by b_1, b_2, \ldots, b_n .

²«On the easier Waring Problem for powers of primes I». Proceedings of the Cambridge Philosophical Society, Vol. XXXIII. Part 1. January 1937, 6-12.

³ Since this paper was written, this conjecture has been proved by Vinogradoff «Einige allgemeine Primzahlsätze». Travaux de l'Institut Mathématique de Tbilissi III (1938), 35-67.

Put

$$E=b_1+b_2+\ldots+b_y-\frac{\mathbf{r}}{2}\mathbf{y}(\mathbf{y}+\mathbf{r}),$$

so that $E \ge 0$, since $b_1 \ge 1$, $b_2 \ge 2$ etc. Then I prove the existence of at least $x + \frac{E}{ln} - \frac{M}{l} - 2\varepsilon n$ integers $\equiv n$ of the form a + A, where in fact only A = o and a single other A need be used. This is deduced from the result that at least $\frac{E}{ln} - \frac{M}{l} - 2\varepsilon n$ of the b's can be represented in the form a+Awhere in fact only a single A is used.

We require two lemmas.

Lemma 1. If M is any given integer with $0 < M < \frac{E}{m}$, an integer I > Mexists such that there are at least $\frac{E}{n} - M$ of the b's $\leq n$ in the set $a_1 + I$, $a_2 + I, \ldots$

For the equation

a + v = b

has at least E-nM solutions in the variables v > M, a, b. Thus, for given $b=b_r$ there are at least b_r-r of the a's not less than b_r and hence at least $b_r - r - M$ of the a's not less than $b_r - M$. We find from each of these a's a solution v and summing for r = 1, 2, ..., y, the total number of solutions is not less than

$$\sum_{r=1}^{n} (b_r - r) - yM > E - nM.$$

But there are at most n-M possible values of v, namely, M+1, $M+2, \ldots, n$, and so, for at least one value of v, say I, there are not less than

$$\frac{E-Mn}{n-M} > \frac{E}{n} - M$$

of the b's in a + I. This proves the lemma.

Lemma 2. If ξ is the number of b's $\equiv n$ in the set a + U where U is any given integer, and η is the number of b's in a - U, then $\eta \leq \xi + U$.

Let us denote by $a_1 < a_2 < \ldots < a_k$ the *a*'s not exceeding n - U. Evidently $z \ge x - U$. Thus the number of a's in the sequence $a_1 + U$, $a_2 + U$, ..., $a_z + U$ is not less than $z-\xi \ge x-\xi-U$, hence the number of *a*'s in a_i-U is also not less than $x-\xi-U$. Thus the number of b's in a_i-U does not exceed $\xi + U$, which proves the lemma.

Now we proceed to prove our main theorem. We express I as the sum and difference of exactly l of the A's say

$$I = \sum_{i=1}^{l} \varepsilon_i A_i, \ \varepsilon_1 = \varepsilon_2 = \ldots = \varepsilon_r = \mathfrak{l}, \ \varepsilon_{r+1} = \varepsilon_{r+2} = \ldots = \varepsilon_l = -\mathfrak{l},$$

by including a sufficient number of A_0 's among the A's if need be and where A_1 need not denote the first, A_2 the second etc. of the A's.

Denote by μ_s the number of $b's \leq n$ in the set $a + \varepsilon_s A_s$; s = 1, 2, ..., l. I prove now that

$$\mu_1 + \mu_2 + \dots + A_{r+1} + A_{r+2} + \dots + A_l \ge \frac{E}{n} - M.$$

For in the set of integers given by $a+A_1+A_2$ there are at most $\mu_1+\mu_2$ of the b's. Thus the set $a+A_1$ contains μ_1 of the b's together with some a's. When we add A_2 to the numbers of the set $a+A_1$, the μ_1 b's, give at most μ_1 b's, while the a's give at most μ_2 b's. Now take the set $a + A_1 + A_2 + A_3$. This contains at most $\mu_1 + \mu_2 + \mu_3$ of the b's by precisely the same arguments applied to the sum of $a+A_1+A_2$ and A_3 . Similarly the set $a+A_1+A_2+\ldots+A_r$ contains at most $\mu_1 + \mu_2 + \ldots + \mu_r$ of the b's. We now assert that the set $a + A_1 + A_2 + \ldots + A_r - A_{r+1}$ contains at most $\mu_1 + \mu_2 + \ldots + \mu_r + \mu_{r+1} + A_{r+1} + A_r + A_r$, the $\mu_1 + \mu_2 + \ldots + \mu_r$ b's give at most $\mu_1 + \mu_2 + \ldots + \mu_r$ b's while the a's give at most μ_{r+1} of them. Also the members of the set $a + A_1 + A_2 + \ldots + A_r$ exceeding n give at most A_{r+1} b's. By the same argument, the set $a + A_1 + A_2 + \ldots + A_r$ $+ \ldots + A_r - A_{r+1} - \ldots - A_l$ i. e. the set a + I contains at most $\mu_1 + \mu_2 + \ldots + \mu_r +$

 $A_{r+1}, A_{r+2}, \ldots, A_l$ are all less than εn , thus we have

$$\mu_1+\mu_2+\ldots+\mu_l>\frac{E}{n}-M-l\,\varepsilon n.$$

Hence one of the μ 's, say, $\mu_k \ge \frac{E}{ln} - \frac{M}{l} - \varepsilon n$, and so if $k \ge r$, or from lemma 2. by taking $U = A_k$ if k > r, the number of b's in $a + A_k$ is not less than $\frac{E}{ln} - 2\varepsilon n - \frac{M}{l}$.

We may suppose without loss of generality that the *a*'s have asymptotic density δ_a , say δ , with $\delta < \mathbf{I}$. We have $f(b_{\rho}) \geq (\delta - \eta) \ b_{\rho}$, every $\eta > 0$ if $b_{\rho} > N = N(\eta)$; hence

$$b_{\rho} - \rho = f(b_{\rho}) \ge (\delta - \eta) b_{\rho}, \quad b_{\rho} > \frac{\rho}{1 - \delta + \eta},$$

and therefore

$$E = b_1 + b_2 + \dots + b_y - \frac{y(y+1)}{2} \ge \frac{1+2+\dots+y}{1-\delta+\eta} - \frac{y(y+1)}{2} - N_1(\eta)$$
$$\ge \frac{\delta-\eta}{2(1-\delta+\eta)} y(y+1) - N_1$$

for sufficiently small η .

Hence for the number T of integers not exceeding n in the set a + A we have

$$T \ge x + \frac{\delta - \eta}{2(1 - \delta + \eta)} \frac{y^2}{nl} - \frac{M}{l} - 2 \varepsilon n - N_1.$$

Write

$$x + \frac{\delta - \eta}{2(1 - \delta + \eta)} \frac{y^2}{nl} = \varphi(x) \qquad (y = n - x).$$

For

$$x \geq (\delta - \eta) n,$$

$$\varphi'(x) = 1 - \frac{\delta - \eta}{2(1 - \delta + \eta)} \frac{2(n - x)}{nl} \ge 1 - \frac{\delta - \eta}{l} > 0$$

i. e.

$$T \ge \varphi(x) - \frac{M}{l} - 2 \varepsilon n - N_1 \ge \varphi[(\delta - \eta) n] - \frac{M}{l} - 2 \varepsilon n - N_1$$

$$= (\delta - \eta) n + \frac{\delta - \eta}{2(1 - \delta + \eta)} \frac{(1 - \delta + \eta)^2 n^2}{nl} - \frac{M}{l} - 2 \varepsilon n - N_1.$$

Hence

$$T \ge n \left(\delta - \eta - 2\varepsilon + \frac{(\delta - \eta) \left(1 - \delta + \eta \right)}{2l} \right) - \frac{M}{l} - N_1.$$

This proves the inequality

$$\delta' \ge \delta + \frac{\delta(1-\delta)}{2l}$$

and establishes the result.

\$ 2

Let $p, p_1, ..., q, q_1, ...$ denote primes; k a positive integer. Romanoff^{*} proved that the density of the integers of each of the forms $p+k^2$ and $p+2^k$ is positive. By his method, I can prove that the density of integers of the form $p+q^2$ is positive. I have, however, proved in my paper⁵ that every

⁵ Loc. cit.

⁴ «Über einige Sätze der additiven Zahlentheorie». Mathematische Annalen, Band 109 (1934), 668-678.

integer *m* is the sum of a bounded namber of positive and negative squares of primes. The proof shows that the primes in the representation of *m* may all be taken less than *m*. I prove now that the primes whose squares have a negative sign may be taken less than $m^{\frac{49}{50}}$, by aid of a result of Tchudakoff⁶, namely, that for sufficiently large *n* the interval *n*, $n+n^{\frac{9}{4}+5}$ contains at least one prime.

For suppose *m* is sufficiently large, and p_1 is the greatest prime not exceeding $m^{\frac{1}{2}}$; then from Tchudakoff's result, we obtain

$$m-p_1^2=(m^{\frac{1}{2}}-p_1)(m^{\frac{1}{2}}+p_1)< m^{\frac{1}{s}+z}.$$

If now p_2 is the greatest prime not exceeding $m - p_1^2$, then $m - p_1^2 - p_2^2 < m$, and similarly

$$m - \sum_{i=1}^{6} p_i^2 < m^{\left(\frac{\tau}{5} + \mathfrak{s}\right)^6} < m^{\frac{4\nu}{100}}.$$

Thus from the representation of the left hand side, a constant exists such that every sufficiently large integer is the sum of l positive and negative squares of primes where the negative squares may be supposed to be less than $m^{\frac{49}{50}}$.

Let the asymptotic density of this sequence $p+q_1^2$ be $\delta^{(1)}$; then by § 1 the asymptotic density of the sequence $p+q_1^2+q_2^2$ is not less than

$$\delta^{(1)} + \frac{\delta^{(1)}(1-\delta^{(1)})}{2l} = \delta^{(2)}.$$

In the same way, the asymptotic density of the sequence $p+q_1^2+q_2^2+q_3^2$ is not less than $\delta^{(2)} + \frac{\delta^{(2)}(1-\delta^{(2)})}{2l} = \delta^{(3)}$.

Hence a constant c exists such that asymptotic density of the integers of the form $p+q_1^2+q_2^2+\ldots+q_c^2$ is greater than 1/2. From this it follows immediately that every sufficiently large integer is of the form $p_1+p_2+\sum_{i=1}^{2c}q_i^2$.

\$ 3

Let $a_1 = 1 < a_2 < ... < a_x \le n < a_{x+1}...$ be a sequence of asymptotic density $\delta_a = \delta$, and let ε be an arbitrary number. Let *m* be the greatest integer such that $f(m) \le (\delta - \varepsilon) m$ but for y > m, $f(y) > (\delta - \varepsilon) y$. Then m + 1 is an *a*, for if not $f(m+1) = f(m) \le (\delta - \varepsilon) m < (\delta - \varepsilon) (m+1)$. It is easy to see that the Schnirelmann density of the positive members of the sequence $a_i - m$ is not

⁶ «On the difference between two neighbouring prime numbers». Recueil Mathématique 1 (1936), 799-813.

less than $\delta - \varepsilon$. Hence from a result of Khintchine, it follows that the Schnirelmann density of the sequence $(a_i - m) + (a_j - m)$ i.e. the density of the sequence $\{a_i - m, a_i + a_j - 2m\}$ the members of which are given by the sequences $a_i - m, a_i + a_j - 2m$ is not less than $2(\delta - \varepsilon)$, i.e. for sufficiently large nthe number of integers not exceeding n of the sequence $\{a_i + m, a_i + a_j\}$ is not less than $2(\delta - \varepsilon)n - 2m$. Let now n be sufficiently large and denote by $a_{i_1} < a_{i_2} < \ldots < a_{i_N}$ the integers not exceeding n - m which $a_{i_N} + m$ does not occur in the sequence $a_i + a_j$. Since $m + \tau$ is an a_i , it follows that

 $a_{i_r} + m \neq a_{i_r-1} + m + 1$ $a_{i_r-1} + 1 = a_{i_r-1} + a_1$

is not an a_i . Thus for the number of z integers of the sequence $\{a_i, a_i + a_j\}$ not exceeding n we have the inequality

$$T \ge \max \left[x + V, (2\delta - 2\varepsilon)n - 2m - V \right] \ge \max \left[(\delta - \varepsilon)n + V, (2\delta - 2\varepsilon)n - 2m - V \right] \ge \frac{3}{2} (\delta - \varepsilon)n - 2m.$$

This means that the asymptotic density of the sequence $a_i + a_j$ is not less than $-\frac{3}{2}\delta$ and proves the result.

University Manchester.

П. ЭРДЕШ

АСИМПТОТИЧЕСКАЯ ПЛОТНОСТЬ СУММЫ ДВУХ ПОСЛЕДОВА-ТЕЛЬНОСТЕЙ, СОСТАВЛЯЮЩИХ БАЗИС ЦЕЛЫХ ЧИСЕЛ. II.

(Резюмс)

Пусть асимптотическая плотность δ_a носледовательности (a) целых чисел

$$a_1 < a_2 < \dots$$

определена так:

$$\delta_n = \lim_{n \to \infty} \inf \frac{1}{n} \sum_{a_m \leq n} 1.$$

i. e.

Путем элементарных метрических соображений автор доказывает следующую теорему:

Если ба асимптотическая плотность последовательности (a); $A_0 = 0$, $A_1 < A_2 < \dots$ последовательность (A) целых чисел; к любому положительному ε существует такое M, что всякое целое $m \ge M$ представимо в виде сумты l слагаемых вида $\pm A_j$, причем модуль каждого отрицательного числа $-A_j$ меньше чем εm ; δ'_a асимптотическая плотность последовительности (a+A), (т. е. совокупности чисел вида $a_i + A_j$)—

To

$$\delta'_a \geq \delta_a'' + \frac{\delta_a(1-\delta_a)}{2l}.$$

Отсюда автор выводит, пользуясь одним из своих прежних результатов и оценкой

$$p_{n+1} - p_n = O\left(p_n^{\frac{3}{4} + \varepsilon}\right)$$

Чудакова: Всякое достаточно большое целое предлиавило в виде суммы двух простых и ограниченного числа квадратов простых.

(Этот результат превзойден теоремой 5 работы И. М. Виноградова «Некоторые общие теоремы, относящиеся к теории простых чисел» (см. стр. 29 этого тома Трудов), из которой следует, что всякое достаточно большое целое представимо в виде суммы не более девяти квадратов простых.)

Затем автор доказывает, опять элементарным путем:

Если $a_0 = 0$, $a_1 = 1 < d_2 < ...$ последовательность (a) целых чисел асимптотической плотности $\delta_a \leq \frac{1}{2}$, то асимптотическая плотность последовательности (a + a) (т. е. совокупности чисел вида $a_i + a_j$) по крайней мере равна.

$$\frac{3}{2}\delta_a$$
.

Этой теоремы нельзя улучшить, как показывает пример

 $a_0 = 0, a_1 = I, a_2 = 4, a_3 = 5, a_4 = 8, a_5 = 9, \dots$