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1. The quadratic forms dealt with in this paper are all of the classic 

type 
f(x)= 5 Ujj Xj Xj 

i,j=l 
(Uij = Uji), 

u-ith integer coefficients Uij and determinant 

D=.jjUjjjl (i,j= 1, 2, . ..) n). 

A positive definite form f(x) is called non-decomposable if it cannot be 
expressed as a sum of two positive definite or positive semi-definite 
forms. 

Mordellt has proved that, if 

f(z) is decomposable. It is an interesting problem to find non-decom- 
posable forms for which D is large. Let pn be the largest value of D for a 
non-decomposabIe form in n variables. MordeIl$ has proved that there 
exist non-decomposable forms for n = 6, 7, and 8. We5 have proved 
that there exist non-decomposable forms for every n > 8, and that, for 
n > 189, /LfL > (n- 17e>/13. 

In $2, we prove that for certuim sequences of n, there exist non- 

decomposable forms with D > (1. l)n. It is not difficult to show that 
pn > ( 1 I l)?‘, for all sufficiently large m, but we do not give the proof here, 
since it is rather complicated. 

-- -. ~ - 
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Suppose now D = 1. Denote by h, the number of classes of positive 

definite quadratic forms in n variables with determinant unity. For 

n ,< 7, it is well known that h, = 1. For n = 8, 9, 10, 11, A, = 2, these 

results being due to Mordell *, Kot, Ketley$, and Ko$, respectively. 

Koj has proved that hh,,= h,, > 3. 
For n= 2, 3, .,., 7, the forms are decomposable into an obvious sum of 

n squares. For n = 8, Mordelly has proved that one of the two classes is 

non-decomposable. Ko** has proved that all the forms are decomposable 

for n= 9, 10,ll: 13, the result for n= 10 being due to Ketleyj-j-. We$$ 

hare proved that non-decomposable forms exist for n > 23 and also for 

n= 12, 14, 15: 16, 18, 20, 22. 

The cases n = 17, 19, 23 are not yet settled. The proof depends upon 

finding certain forms with D = 1 which do not represent, unity. This 

suggests the problem of the existence of forms with D = 1 which do not 

represent any integer less than K,, where K, de’pends only upon n. We 

cannot even construct a form which does not represent 1 and 2, but in $3 

we prove that if n = 8m +4, there exists a form with D = 1 which does not 

represent odd integers less than 2m+1, 

2. I,EMMa I*. The j-OWH 

f=aX,2+2~X,X,+2 ~ Xj2+2~~‘XiXi+ll 
i=2 i=2 

with determinant D < n, where a > 0, /I > 0 are integers satisfying the 

* Mordell, “ The definite quadratic forms in eight variables with determinant unity “, 

Journal de Math., 17 (1938), 41-46. 
t Ko, ‘* Determination of the class number of positive quadratic forms in nine variables 

with determinant unity “, Journal London Mut?~. Sot., 13 (1938), 102-l 10. 
$ Ketley, M.&L Dissertation of the University of Manchester, 1938. 

s KQ, “ On the positive definite quadratic forms with determinant unity “, Act4 

Aritlmetiw, not yet published. 

[( Lot. cit. 
lj Mordell, “ The reprcsontation of a dofinito quadratic form as a sum of two others ” 

AnmZs of Matk., 38 (1937), 751-737. 

** See Ko, lot. cit. 
tt See Ketley Zoc. cit. 
$$ See Erdijs and Ro., 1012. Cit. 
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conditions 
/32>cc>(l-l/n)j32, 2/3<n, 

is positive de$nite and nolt-decomposable. 

LEMMA 2-f. Let the positive de$nite quadruticjorms 

g1 = 5 UijXiXj, 
II. 

CJ2= 2l aijXiXj> 
i,i=l i, knt2 

having determinants ‘U,,, ‘U 2, ‘E 3, respectively, be non-decomposable. Denobe 
by B the cofactor of amm in Q--,. If there exists a positive de$nite quadralic 

form g of determinant ‘P- <.Q, U-,, of the type 

g = g~+~~+,+2x,%+1-!-!73~ 

where a is an integer and 0 < a < B/‘Ds,, then, b is non-decomposable. 

LEMMA 32. The form 

has determinant n-j- 1. 

2 2 qq- 2 ‘5’ xiqs, 
i=l i=l 

LEMMA 4. Let the forms 

9 = 2 aij Xi5j, 

i, I=1 
g’ = i El aij xi*t’j 

have determinants D, D’ respectively, and let the cofactor of a,,,, in. D be A, 
and that of a;, in D’ be A’. Then the form 

g” = g(xl, . ..) x,)+~x,G+~+~x:+~ +2x,+1 x,+2+g’(X,,-t2> - * * > %+d+J 

has determinant 3Dl3-DA’--‘A. 

* See Edi% and Ko, lot. cit. 

t SW Erdijs and Ko, Zoc. cit. 
$ See Erd& and Ko, Zoc. cit. 
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The determinant of 8” is of t,he type 

By Laplace’s development, D” is equal to the sum of all the sigded products 
-&MM’, where M is an n-rowed minor having its elements in the first 
n columns of D”, and M’ is the minor complementary to n/r. The sign is 

+ or - according as an even or odd number of interchanges of the rows of 
D” will bring J! into the position occupied by the minor D whose elements 
lie in the first n rows and first n columns of D”. All the X’s are zero except 
possibly D and those obtained by replacing one row of D by (0, 0, . . ., 0, 1). 
The complementary minor of D is 3D’--A’. The complementary minors 

of the others are zero, except that of the minor obtained by replacing the 
lastrowofDby(0, . . . . 0, 1). This gives 31 = A, M’ = D’ and the number 
of interchanges of the rows is 1. Hence we have 

D” = D(3D’--A/)---AD’ = 3DD’-DA’--AD’. 

LEMMA 5. Let 

Write 

where c@+~ is w&ten for xmfl, and where c > 4 and m = [+c2]. Then ff+l is 
a form in m+ 1-t-t (m+2) vam’ables, with determinant not less than 

(&2-2+$2/(f~4-SC2+16))f+1 

Or 
( W- 5)+bz/(C4-26C2+25))‘+‘, 

according as r. is even or odd. 
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Let the determinant of fj+I be D,+1 and the co-factor of the lower right- 
hand corner element of Di+r be A$+,. Then the determinant of fj+l is of 

the form: 

ll 
3 1 2. l . 21 

12c 
c e-1 I 

1 

121 

$ 12.. -1 :21 7 

. 
3 
$ 

21 
12c 

c d-l L 
\ 

, 

‘j 

j+l blocks. 

By using Lemma 3, 

i 

D, = (CQ- l)(m+ l)-c2m = c2-m- 1, 
(1) 

A,= (c2-l)m-cym-1) = c2-m =D,-+l. 

By Lemma 4, on taking D = D’ = II,, A = A’ = A,, 

(4 D, = 3D12--2&D, = Q2-2D1. 

Similarly from Lemma 4, on taking 

D=Dj, A=A,, D’=D1, A’=A,=D,+l, 

(3) Dj+l = (2D,- 1) Dj-Aj D,. 
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By Lemmas 3 and 4, on taking D = Dj, A = Aj: D’ = m+ 1, A’ = nt, 

(4) Aj,, = (2m+3) Dj- (m+ 1) A,. 

To solve Obese recurrence formulae, solve (3) for AjP change j into j+ 1 and 

substitute in (4), then 

(5) D+, = (2D,-m-2) Di+l- (D,+m+ l)D,, 

with the initia,l values D, = G-m- 1: D, = D,2-20, from (1) and (2), 

If c is even, m = $c2, D, = +c’--- 1: and from (5) 

(6) D,+z/Dj+, = &2-4-c”,i(Dj+l/Dj). 

From c > 4, it is easily seen that PC”- 8c2+ 16 > 0 and that 

D,iD, = D,-2 = @--3 > @z--2++ 4(&4-W+ 16)! * 

the larger root of the quadratic associated with the recurrence formula. 

Hence by obvious induction from (6), 

Dj+cJDj+l >, ~c2-i-c2/j&2-P+~ d&c”-W+l6)j 

= p-2+* ,V/(tC4-8C2+16). 

Hence Di 3 ( $c2-2+Q .t/(~~~-8~2+10))t. 

Similarly, if c is odd, m= &(c”- l), D, = Q(c”- l), and so from (6), 

(7) D,+2/D,+1 = &(c~-~)-c~,‘(D~+~;D,)> 

As above, by using (7), and the relation 

D,,:D, = 0,-Z = $(c2-5) > i(c2--5)+$ y/(c4-26c2+25), 

where cp--26c2+26 > 0 for c > 4, we obtain the required result of the 

lemma. 

LEMMA 6. The fovm fi+l of Lemma 6 is positive de$nite. 

For t = 0, it is obvious that fi is positive definite on calculating the 

minors of the determinant D, by Lemma 3. 
Suppose fj is positive definite. Then the lemma is proved if we can prove 

that fi+l is positive definite. 
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Denote the j(m+2), . . . . (jfl)(m+2)-1 rowed minors of Dj+r by 
d 1, **-, dm+2, where dmLz = Dj+, > 0. Since fi is positive definite, fj+i is 
not positive definite if and only if d, <O for certain i lying between 
1 and m+2. Thus iff,,, is not positive definite, without loss of generality, 
-we can assume that d, < 0. and d, > 0 for 1 < k < r. Write d, = Dj > 0. 
Then, on referring to the diagram giving the determinant Dj+r of 
Lemma 5, it is easy to see that 

drfl = 2d,-d,l> 

dr+3 = 2d,,,-dd, = 3&E,- 2d,.-1, 

. . . .a. . . . ..* . . . 

d In+2 = 2L- d,,, = (m--r+3) d,- (m--r+2)d,, < 0, 

in contra’diction to dT?,+2 = Dj+l > 0. Hence the lemma is established. 

LEMMA 7. The form ft+l is non-decomposable. 

By Lemma 1, it is easy to see thatjr is non-decomposable. It suffices 
to suppose that fj is non-decomposable and to prove that fj,l is non- 
decomposable. 

In Lemma 2, if me take 

g,= 22~)9$2xlj)x$i)+g,, 

then TV = 1, g = fj+l and Q-, = D;, Q, = D,, C. = Dj+l, B = Aj. 

By Lemma 1, y,, g, are non-decomposable; and by Lemma 6, fj+i is 
positive definite. Hence, by Lemma 2, fj+l is non-decomposable if 

(8) AJD, > 1 > 0 and Df+l < D,Dj. 

&Since fi is non-decomposable, A+ > Dj, for otherwise 

is a decomposition of jj. Next, from (6), 

Dj+l= (2D,-m-2) Dj- (D,+m+ 1) D,-, < D, Dj, 

if (0, -m-2) Di < (D,+m+ 1) D,-l. 
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This holds, since 

&---m--2= c’-2m--3 = ~~---2[&~]-3 < 0 and (~,+m+l)Dj-l > 0. 

Hence our lemma is proved. 
From Lemmas 5 and 7, we easily deduce 

!~~E~REM 1. If n= ([*c2]+1)t--1, where c>4, t> 0 are integers, 
then a non-decomposable fom em*& with determinant 

D> (te2-2+~~(ac4-sC2+ltj))‘, or (&(c2-5)+$ y’(c”-26c2+25)#, 

according as c is even m odd. 

When we take c = 5, we have a non-decomposable form in n = 13t- 1 
variables with determinant greater than or equal to 5’> (1.13)“, since 
5~~ > 1.13‘ 

3. THEOREM 2. If n = 8m+4, there exists a form with D = 1 which 
does not represent odd integers less than 2m+ 1. 

The form is the extreme form given by Korkine and Zolotareff *, 

with determinant unity. P represents odd integers only when x*,+4 is 
odd and then 

*&&+, > a, (x~+~~gn+4)~ 3 2 (i = 3, *-‘, 3n+3). 

Hence F > (8n+2)/4 = 2924-4, 

and so F >, 2n+1. 

The University, 
Manchester. 

* Korkine and Zolotareff, Math. AiEnaZen, 6 (1873), 366-389. 


