
NOTE ON THE PRODUCT OF CONSECUTIVE INTEGER,S (II) 

P. ERDSS*. 

In a previous paperi, I proved that a product of consecutive positive 

integers is never a square. In part I of the present paper; I show that, for 

every I> 2, there exists a lz, = X:,(Z), such that. for k > k,, 

(1) n(n+l) . . . (n+Ll) = ?Jl 

is impossible. From t,he well-known theorem of Thue and Siegel it follows 

that, for fixed k, equation (I) has only a finite number of solutions; thus 

there is only a finite number of cases in which a product of consecutive 

integers is an l-th power. 

In the second pa,rt of this paper I show that, for k > 2l, 

is impossible. The condition n > 212 involves no loss of generality, since 

It is obvious that = y2 is possible ; for example, 

(;) =: 65 (y) = 352; but it is very probable that (2) has no solutions if 

1> 2. I have proved this only for 1= 3. 

I. 

We need two lemmas. 

LlmIMA 1. Let c1 be a. fixed positive number. Let m be suficiently large, 

and let 0 < a, < a.2 < . . . < u, < m be a sequence of integers with r > elm. 

Then there exists a positive numbe? cp, depending only on cl, such that there 

are at least &rn pairs a,, ai for zllhich (ai, aj) > c2m. 

Prooj. Denote by b,, b,, . . . . b, all integers greater than czm and not 

greater than m having every proper divisor less than or equal to c2m. 
Obviously every integer lying between c2m and m has a divisor among the 
b’s. Hence there are at least 

r-c,m-s > (cl-cJ m-s 

* Received 21 February, 1939; read 33 Illarch, 1939. 
i P. ErdBs, Journal Lmdon Xath. Sm., 4 (1939), 194-198. I refer to this paper as 

(1). 
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pairs ai, aj for which (ai, aj) is divisible by a b, i.e. is greater than c2 m. Thus 
to prove the lemma it is sufficient to show that, for sufficiently small c2, 

(3) s < (*cl-CJ m. 

To prove (3) we split the b’s into two classes. In the first class we put 
the b’s less than c,tm, and in the second class the other b’s. It is evident 
that every prime factor of any b of the second class is greater than l/cat ; 

thus, if we choose c2 sufficient,ly small, the number of b’s of the second class 

is less than &in% for sufficiently large m. Also the number of b’s of the 

first class is at most Qrn. Hence 

s -=c &m+c,*m < (&cl--c2) m, 

for sufficiently small ca. This proves the lemma. 

LEMMA 2. The number of solutions of 

AXE- By” = C, 

where I > 2 and A, B, G are given positive integers, is j?ndte. 

Proof, Lemma 2 is a special case of the well-known theorem of Thue 

and Siegel. 

THEOREM I. For k > L,(Z), (1) has no solutions. 

Proof. First we show that, if (1) has a solution, then* n > ti. We 

begin by proving that n > X;. For, if n <L, then, by a theorem of 
Tchebicheff, there exists a prime p satisfying 

n+k-l>p>+(n+k)>n; 

thus p occurs in the left-hand side of (1) to the first power, which is 

impossible. Suppose next that n > k ; then, by a theorem of Sylvester 

and Schur?, the left-ha.nd side of (1) is divisible by a prime p greater than k. 

Obviously only one factor, say n j-i (vZ < k-l), can be divisible by p, and 
so, if (1) holds, n+i E 0 (mod pi). Thus 

n+i >,pl > (k+ 1)” > k1+2E+ 1, i.e. n > ii. 

We now write 

n-t-i=a,x,l (i=O, 1, 2, . . . . k-l), 

* The proof is simila,r t,o the proof in (I) t,hat n > k2. 
t P. Erdk, Jourml London Math. Sot., 9 (1934), 282-288. 
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where the a’s are not divisible by any I-th power and have all their prime 

factors less than k. As in (I), we show that the a’s are all different. For 

otherwise we should have 

k > a,x~-ajxj’>ZU~iz~-l> Z(ajXjl)l/l= Z(n+:j)l'l>nl/l, 

in obvious contra’diction to the inequality proved above. 
Since there a.re a,t most [k/p“] + 1 multiples of p’” on the left side of (1) 

and since the a’s a,re not divisible by I-th powers: it follows ohat 

(4) 

< (4k)“Ik!, 

since* II p < 4k. 
p<k 

From (4) it follows that, at lea’st &k of the a’s do not exceed 4g-2 k, for 
otherwise we should have 

aoal --. ak-l, > 1 ,2 . . . [+k] (4z-“-2 k)k-[@I > 4”(“1) k!, 

Next we show that, for sufficiently large k, the Zi corresponding to those 

ai which do not exceed 4g-2 k are all different. For otherwise we should 

have 

when k > 4’-l. 

Now, by applying Lemma 1 with m = 122-2 k, c1 = l/S 431-2, we deduce 
that there exist at least ik pairs ai, aj with cti < k421-2, u, < kiis--?, such that 

(cc,., aj) > c2 k: where c2 depends on 2 but not on E. For each of these pairs 

we have 

The equations (5) are all of the form 

(6) 
d&-By’ z C, d < 6 42-, 1 

B < - 421-2, 
c2 

c < ;. 

Thus the number of different equations (5) is less than 

4*-4 c,3. 

* P. Erdos, Ioc. cit. 
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Hence there is an equation which occurs at least 

D = i&3/441-3 

times ; and, since the :ri’s belonging to different a’s are all different, this 
equation has at least D solutions. But for sufficiently large k this contra- 

dicts Lemma 2. This completes the proof of Theorem 1. 

II. 

THEOREM 2. Suppose that n > Sk ; them, for k > 21, 

(7) 
‘n 
0 k, =y” 

is impossible. 

Proof. Write 
n--i = a, Xii (i= 1, 2, ‘..) E-l), 

where the u’s are not divisible by any I-th power and have only prime factors 

not exceeding k. We can show just as in the first part of the paper that the 
a’s are all different. If (7) holds, we evidently have 

We now show that 

a,,al . . . Ukul <IL!, 

and in fact aoal -.. uk-l II%!. 

Let p be any prime; let vz7 and pp be defined by* 

pllk!, p)‘L”!laoa, ...uk-l. 

It is sufficient~ to show that vp > pD for every p. Evidently 

Thus pp--VP <l-l. 

On the other hand it follows from (8) that 

pp--vp=O (mod I); 

this proves that V~ > pp. 

For E >, 2z, we have 

aoaq . . . a,, , > 1.2 . . . (2’-l)(Zq-1) . . . (k+l) > k!, 

an obvious contradiction. 
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THEOREM 3. Suppose that n > 2k ; th.en 

is impossible. 

Prooj. We use the same notation as in Theorem 2. In the previous 

proof we showed that 

u,a, . . . c++~ < k!, 

and, since the a’s are all different, this means that the a’s are the integers 

1, 2, ..*, k in some order. Suppose first that k is even. Consider 

n---i=$b3 and n-j = ky3 (i, j < k) ; 

then 2{j-;)/k = z%Zy3= & 1, 

which is impossible*. 
Suppose next that k is odd. Here we obtain 

2(.j--i)/(k-1) = x3-2y3= fl or &2. 

The first case is impossible. The second leads to 

x3= 2@3fl), 

i.e. yq 1 = 4u3 (u = &), 

which is also impossiblet. This proves Theorem 3. If we could show 
t,hat the equations 

&1=2y” and $+1=2”-lyl 

are both impossible for every 12 3, we could immediately deduce that 

is impossible. 

n 
0 k 

ZZC yl, 12 3, n > 2k 
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