
ON A LEMMA OF LITTLEWOOD AND OFFORD

P. ERDÖS

Recently Littlewood and Offord1 proved the following lemma
Let x1, x2, . - . , x, be complex numbers with I x1I ? 1 . Consider the
sums Fr_, erxr , where the ek are ± 1 . Then the number of the sums
~r_,etx, which fall into a circle of radius r is not greater than

cr2n(log n)n-1-1 .
In the present paper we are going to improve this to

cr2 7zii 1 / 2 .
The case x1= I shows that the result is best possible as far as the order
is concerned .

First we prove the following theorem .
THEOREM 1 . Let x 1 , x2, . - - , x„ be n real numbers, I xi I ? 1 . Then the

number of sums EL 1 ekx k which fall in the interior of an arbitrary in-
terval I of length 2 does not exceed C,,,_ where m = [n/2 ] . ([x] denotes
the integral part of x.)

Remark . Choose xi=1, n even. 'Then the interval (-1, +1) con-
tains C

	

n
,,,,, Burns 1
_,EX,,

-

sible .
We clearly can assume that all the xi are not less than 1 . To every

sum zL= 1 Ek :Y'k we associate a subset of the integers from 1 to n as
follows : k belongs to the subset if and only if ek= +1 . If two sums
~k_,Ekxk and Zx=1E1. xk are both in I, neither of the corresponding
subsets can contain the other, for otherwise their difference would
clearly be not less than 2 . Now a theorem of Sperner 2 states that in
any collection of subsets of n elements such that of every pair of sub-
sets neither contains the other, the number of sets is not greater than
C,,,,,,, and this completes the proof .

An analogous theorem probably holds if the xi are complex num-
bers, or perhaps even vectors in Hilbert space (possibly even in a
Banach space) . Thus we can formulate the following conjecture .
CONJECTURE . Let x1, x2, • • • , x„ be n vectors in Hilbert space'

(Ixi l I >_ 1 . Then the number of sums ekxk which fall in the interior
of an arbitrary sphere of radius I does not exceed C. . . .
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At present we can not prove this, in fact we can not even prove that
the number of sums falling in the interior of any sphere of radius 1
is o(2~) .

From Theorem 1 we immediately obtain the following corollary .
COROLLARY . Let r be any integer . Then the number of sums Zr_,ekxk

which fall in the interior of any interval of length 2r is less than rC»,m .

THEOREM 2 . Let the x; be complex numbers, I x;l ? 1. Then the num-
ber of sums Er-,e,x k which fall in the interior of an arbitrary circle of
radius r (r integer) is less than

crC,,,m < c,r2ln112.

We can clearly assume that at least half of the x ; have real parts
not less than 1/2 . Let us denote them by x1, x2, • • • , X9, t >n/2 . In
the SUMS ~sv ,ekxk we fix et+1, • • . , e,, . Thus we get 2 1 sums. Since
we fixed et+ ,, • • • , en, ~ta,ekxk has to fall in the interior of a circle
of radius r . But then El_,ekR(xk) has to fall in the interior of an in-
terval of length 2r (R(x) denotes the real part of x) . But by the corol-
lary the number of these sums is less than

crCt, [t/2] < c1r2 t/t1/2.

Thus the total number of sums which fall in the interior of a circle
of radius r is less than

c2r2n/n1 / 2 ,

which completes the proof .
Our corollary to Theorem 1 is not best possible . We prove :
THEOREM 3 . Let r be any integer, the xi real, I x ; I >__ 1 . Then the num-

ber of sums Ex_, ekxk which fall into the interior of any interval of length
2r is not greater than the sum of the r greatest binomial coefficients (be-
longing to n) .

Clearly by choosing x ; =1 we see that this theorem is best possible .
The same argument as used in Theorem 1 shows that Theorem 3

will be an immediate consequence of the following theorem .

THEOREM 4 . Let A 1 , A2, • • • , A u be subsets of n elements such that
no two subsets A ; and A ; satisfy AiJA; and A ;-A, contains more
than r -1 elements . Then u is not greater than the sum of the r largest
binomial coefficients .

Let us assume for sake of simplicity that n = 2m is even and
r=2j+1 is odd. Then we have to prove that



900

	

P. ERDÖS

+i
2L S 1 C2m,n+i•

ia--1

Our proof will be very similar to that of Sperner . 2 Let A 1, A 2, • • *,A U
be a set of subsets which have the required property and for which
u is maximal. It will suffice to show that in every A the number of
elements is between n-j and n+j. Suppose this were not so, then
by replacing if need be each A by its complement we can assume that
there exist A's having less than n-j elements. Consider the A's with
fewest elements ; let the number of their elements be n-j-y and let
there be x A's with this property . Denote these A's by A 1,A 2, • • ' A z .
To each A i, i =1, 2, • • • , x, add in all possible ways r elements from
the n+j+y elements not contained in A . We clearly can do this in
Cn+i+y,, ways. Thus we obtain the sets B1, B2, • • • , each having
n+j-y+1 elements . Clearly each set can occur at most Cn+i-y+1,,
times among the B's . Thus the number of different B's is not less than

xCn+}~Y,r(Cn+t-y+l,r~ -1 > X.

Hence if we replace A 1, A 2, A, by the B's and leave the other
A's unchanged we get a system of sets which clearly satisfies our
conditions (the B's contain n+j-y+1 elements and all the A's now
contain more than n-j-y elements, thus B-A can not contain more
than r-1 elements and also B(rA} and has more than u elements,
this contradiction completes our proof .

By more complicated arguments we can prove the following theo-
rem .
THEOREM 5 . Let A1, A2, • . . A, be subsets of n elements such that

there does not exist a sequence of r+1 A's each containing the previous
one . Then u is not greater than the sum of the r largest binomial coeffi-
cients.

As in Theorem 4 assume that n=2m, r=2j+1, and that there are
x A's with fewest elements, and the number of their elements is
n-j-y. We now define a graph as follows : The vertices of our graph
are the subsets containing z elements, n-j-y =5z5 n+j+y. Two ver-
tices are connected if and only if one vertex represents a set containing
z elements, the other a set containing z+1 elements, and the latter
set contains the former . Next we prove the following lemma .
LEMMA. There exist

	

disjoint paths connecting the vertices
containing n-j-y elements to the vertices containing n +j+y elements .

Our lemma will be an easy consequence of the following theorem

[December
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of Menger : 8 Let G be any graph, V, and V2 two disjoint sets of its ver-
tices. Assume that the minimum number of points needed for the separa-
tion of V1 and V2 is w. Then there exist w disjoint paths connecting V1
and V2. (A set of points w is said to separate Vi . and V2, if any path
connecting V1 with V2 passes through a point of w .)

Hence the proof of our lemma will be completed if we can show
that the vertices V, containing n -j -y elements can not be separated
from the vertices V2 containing n+j+y elements by less than
C2,,,,,_;_„ vertices. A simple computation shows that V1 and V2 are
connected by

C2n.n-j-y(n + j + Y) (n + j + y - 1) . . . (n - j _ y + 1)

paths. Let z be any vertex containing n+i elements, -j -y :5 i :!!gj +y.
A simple calculation shows the the number of paths connecting V1
and V2 which go through z equals

(n+i)(n+i-1) . . . (n-j- y+1)(n-i)(n-i-1) . . . (n-j-y+1)

~S(n+j+y)(n+j+y-1) . . . (n-j- y+') .

Thus we immediately obtain that V1 and V2 can not be separated by
less than C2,,,,,_;_„ vertices, and this completes the proof of our lemma.

Let now A,(1), A2(1), • • - , A Z ') be the A's containing n-j-y ele-
ments. By our lemma there exist sets Ai ( I ) , i=1, 2, . . • , x ;
1=1, 2, . - • , 2j+2y+i, such that A i ~2i+29+11 has n+j+y elements
and A i cal C A i t a+11 and all the A's are different . Clearly not all
the sets Ai ( t) , 1=1, 2, . . • , 2j+2y+1, can occur among the
A 1 , A2 , • • • , A u . Let A i ~a1 be the first A which does not occur there .
Evidently s _< r . Omit Ai (1) and replace it by Ai 00 . Then we get a new
system of sets having also u elements which clearly satisfies our con-
ditions, and where the sets containing fewest elements have more
than n-j-y elements and the sets containing most elements have
not more than n+j+y elements. By repeating the same process we
eventually get a system of A's for which the number of elements is
between n-j and n +j. This shows that

+i
u	C2n.n+iJ

i}j
which completes the proof .

One more remark about our conjecture : Perhaps it would be easier
to prove it in the following stronger form : Let I xiI z 1, then the num-

a See, for example, D . König, Theorie der endlichen and unendlichen Graphen, p. 244 .
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ber of sums Er_ I ekxk which fall in the interior of a circle of radius 1
plus one half the number of sums falling on the circumference of the
circle is not greater than C",,n . If the x; are real it is quite easy to
prove this .

We state one more conjecture .
(1) . Let ~x;l =1 . Then the number of sums ~r_ lekxk withEn
k .1ekxkl _< 1 is greater than c2 "n -1, c an absolute constant .
UNIVERSITY OF MICHIGAN


	page 1
	page 2
	page 3
	page 4
	page 5

