
SOME REMARKS ON ALMOST PERIODIC 
TRANSFORMATIONS 
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In a recent paper in this Bulletin (see [3]‘), W. H. Gottschalk has 
proved a number of interesting theorems on “recurrent” and “almost 
periodic” homeomorphisms of a space on itself, In the first part of 
the present note we give very simple proofs of some of Got&chalk’s 
theorems in an even more general form. In the second half we con- 
sider “regular” transformations in more detail. 

1. Recurrent and almost periodic transformations. 
Notations. Let f be a continuous mapping (not necessarily a 

homeomorphism) of a topological space X in itself (that is,f(X) CX). 
We say that f is recurrent at a point xEX, or that z is recurrent un- 
der f, if, given any neighbourhood U(x) of x, there exist infinitely 
many positive integers n for which ME U(x). (This definition is 
equivalent to Gottschalk’s if X is a T1 space.) Further, f is almost 
periodic at x if, given any U(x), there exists an N(x, U(x)) > 0 such 
that for the (infinite) sequence fn;] of positive integers for which 
f”‘(x) f U(X) we have %;+I- ni 5 N. 

THEOREM I. If a continuous mapping f of a topological space X in 
itself is either (a) recurrent, or (b) almost periodic, at x, then so is f”, 
for each positive integer k.? 

PROOF. Let N, denote the class of positive integers congruent to 
P mod k. We may clearly assume that one at least of the classes 
Nl, Nz, - * - , Nk--l, say N,, satisfies: every neighbourhood U(x) of 3c 
rontainsfn(z) for infinitely many values of nfN,; for otherwise each 
U(x) will contain?(x) for all large enough nENa, and the theorem 
will follow trivially. 

Now let lJO be any given open set containing x. Choose nrENI 
such that f”l(x) E UO. Since f”’ is continuous, there exists an open set 
lJi3x such that UIC Uo and f’Q( UI)C Uo. Choose n&N? such that 

flx>EU 1; and so on. In this way, we define integers nr, . * * , nk-r 
EN, and open sets U,> US> + . . > U;t-13 x such that f”<(x) E Ui-1 
and f̂ i( Vi) C Ui-1. 

Received by the editors June 6, 1944. 
1 Numbers in brackets refer to the bibliography at the end of the paper. 
*Theorem I(a) is Theorem 1 of 131, without the restriction that f be a homeo- 

morphism. Theorem I(b) is Theorem 6 of [3], without the restrictions that f be a 
homeomorphism and that X be compact. 
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In case (a), we observe that for infinitely many integers rnENr we 
have f”(x) E Un-1. For each such m, consider M=nl+rtt+ . * . 
+nk-l+m; clearly M=O mod K, and it is easy to see thatf”(x)EU& 
Since there are infinitely many values of M, and UC, was any open set 
containing x, this proves that f” is recurrent at x. 

In case (b), there will be an infinite sequence {rni} of posi- 
tive integers (not necessarily in N,) such that fmi(x)E VU and 
sup (m;+r-rni) < ~0. Now assume temporarily that k is prime. Then, 
for each m;, one of the k incongruent integers m;, mi+nm-r, * * - , mi 
hk-l+nk-2f ' . . +m+nl will be congruent to 0 mod k; call this 
integer .iVi. It is easy to see thatf”“(x) E Uo and that sup (.Ms+r -1MJ 
< a,. On rearranging the sequence { Mi ] in increasing order of mag- 
nitude, we see that the theorem is proved in this case-if k is prime. 
And the theorem follows in general, by induction over k. 

THEOREM II. Let f be a homeomorphism of a connected topological 
space X on itself (j(X) =X). If a point x, recurrent under f, separates 
two other recurrent points in X, then f is periodic at x.~ 

PROOF. Let X- (x) = A VB, where A, B are mutually separated 
sets and A, B contain the recurrent points y, z respectively. Thus 
Z=AV(x), B=BV(x), and the sets 3 and 8 are connected. If the 
theorem is false, then for every positive integer n we have f’t(x)tzx; 
from this we shall derive a contradiction. 

We first show that a positive integer k exists such that : 
(1) fk(x) meets x and f”(B) meets 3. 
For suppose not. Without loss of generality, we may assume that 

f(x) EA. We assert that : 
(2) j”(Z) meets A, for every positive integer n. 
For this is true when n= 1, since f($3f(x). Suppose (2) is true 

when n=m. Then, since (1) is false, f*(B)AB=O, and so f”(B)CA. 
Hence, since fm is a l-l mapping, f”(A) >B, so that fm+l(Z)>fm+l(A) 
>f(B)3f(x)EA. Thus (2) follows for n =m+l, and therefore holds 
for all n, by induction. Hence, since (1) is false, we have from (2) 
that f”(B)(\B=O for every positive integer n. This contradicts the 
fact that f is recurrent at s~33; and so (1) is proved. 

Again without loss of generality, we may assume now that 
f”(x)EA. Thus f”(B) meets A; but, from (l), fk(B) also meets 3, 
and therefore (being connected) contains x. Since fk is l-l, we thus 
have x@fk(A), and therefore xef(x). Therefore the connected set 

8 Essentially 13, Theorem 21, without compactness restrictions. The proof as given 
assumes (CC) is closed, but could easily be modified so as to dispense with this assump- 
tion. 
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fE(z), which meets A (in f”(x) at least), cannot meet 3, so that 
fk(x)CA. It readily follows that, for every positive integer n, 
f”k(Z) Cf”(;;r) Cd. s ince f”(z) is a closed set not containing x, this 
contradicts the fact that (by Theorem I) the mapping fk is recurrent 
at x. 

2. Regular and strongly almost periodic transformations. Now 
let X be a metric space. A mapping f(X)CX is said to be strongly 
almost fieriodic (cf. [3]-or “almost periodic,” in [ 11) if, given e > 0, 
there exists an integer L >0 such that every set of L’ consecutive 
positive integers contains an n satisfying p(x, f”(x)) < e for all xEX. 

THEOREM III. If X is a totally botinded metric space, and z’f f is a 
homeomorphism of X in itself all of whose negative powers are equi- 
uniformly continuous, then f is strongly almost periodic.’ 

PROOF. By hypothesis, given e>O, there exists a 6 30 such that 
p@‘“(x), f-“(y)) i e/2 whenever m is a positive integer and x, y are 
points of f”(X) such that p(x, y) < 6. We may clearly assume that 
6 <c/2. 

Let Al, * * - , A, be a finite covering of X by sets of diameter less 
than 6. For each positive integer m we define a square matrix B(m) 
of order r by setting b;j(m) = 1 if fm(Ai) meets Aj, 0 otherwise. Of all 
the matrices B(l), B(2), * . * , only a finite number can be distinct; 
let B(l), * - * , B(L) include all the distinct matrices B(m). We shall 
prove the theorem by showing that, given any positive integer M, an 
integer n exists such that: (a) MSn<M+L; (b) p(x, f”(r)) < e, for 
all rGX. 

In fact, B(M+L)=B(m) for some mSL. Define n=M+L-m; 
thus (a) is certainly true. To verify (b), let xEX be given, and sup- 

pose rEA;, f”+“(x) EA j. Then bij(M+L) = 1, and SO b;j(m) = 1 
also; thus ‘f‘(A:) meets Afi Let yEAjiTf”(d;). Then p(x, f”(z)) 
~p(x,f-“(Y))+pCf-m(Y),f M+L--m(~)) $ 6(di)+SCfAm(dj)) (where 6(d) 

denotes the diameter of A) < 6+ e/2 <e. Q.E.D. 
A homeomorphism f of a metric space in itself is said to be regular 

if all its powers (positive or negative) are equi-uniformly continuous. 
Thus every isometry is regular; and conversely it is easy to see that 
if a regular homeomorphism f maps the space art itself (as it must if 
the space is compact), then the space can be remetrized so that f be- 
comes an isometry. 

THEOREM IV. Let f be a regular homeomorphism of a totally bounded 

4 This is closely related to Theorems 5 and 6 of [2, pp. 701, 7021. It would be de- 
sirable to weaken the equi-continuity assumption on the powers off. 
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metric sper;e in itself. There exists an increasing sequence { ni ) of posi- 
tive integers such that f”“(x)+x and f(ni)a(~)+x, uniformly, for all 
XfX.5 

PROOF. Given e > 0, we must show that arbitrarily large integers n 
exist such that, for all xEX, p(f”(x), x) < e and p@(x), x) <e. Now, 
from Theorem III, there exists a sequence {m’ f such that f”‘(x)--+% 
uniformly. We shall first show that a sufficiently rapidly increasing 
subsequence { mi ) of {m’ ] will satisfy (for all x EX, and every pair of 
integers r, s with 0 <r < s) both 

(1) 

and 

(2) p(fw+%-tl+~ * -+m.‘(*), x) < Em 

For, by hypothesis, there is a positive function S(E) of the positive 
variable e such that pcfn”(x), f*(y)) < c/2 whenever p(r, y) < 6(e) and 
f”(x), f”(y) are defined (m=O, +l, 22, . . . ). Choose ml to be 
an m’ so large that p(s’“l(x), x) < e/2 for all xEX. Then define m, 
inductively to be an m’ so large that : (a) p@“(x), x) < e/2#, and 
(b) p(j2trnd * * *+ma-l)na*(~), x) <6(~/2”), for all xEX and every r be- 
tween 1 and s- 1. Clearly (2) follows from (a); and (1) follows from 
(b), since (by the triangle law) 

p(f(m’+mr+l+’ * *+ms) yx>, p%&‘+“‘+“‘(*)~ 

5 ~p(f(n~.*.+~t)‘+n~+~+...+m:(x), f(nrrt.*.+nattl)e+...+,?(*)} 

i?=r 

< c e/zt++2 < e/2. 

Now let Al, . . . , Ak be a finite covering of X by sets of diameter 
less than min { 6(6(e)), 6(e)/2) ; and, as in the proof of Theorem III, 
let B(n) denote the square matrix of order k formed by setting b;j(n) 
= 1 if fn(A ;) meets A j, 0 otherwise. Consider the sequence of matrices 

Forsometwointegersr,swithO<r<s wemust haveB(m?+ . . . +m:) 
=B(&+ * - * +&). An easy calculation (cf. the end of the proof of 

Theorem III) now shows that, for all xEX, P~~?+*..+~:(x), 

f “?+.‘*+“f(x))<S(e), so that p(@+l+‘*‘+“~(x), x)<t/2. Combining 

6 This is essentially a generalization of a theorem of Hardy and Littlewood on 
the denseness of the fractional parts of {PAX} t LL irrational. See [a, p. 1571. It would 
be desirable to weaken the hypothesis of regularity. 
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this with (l), and writing n =m,+l+ - * - +m,, we see that 
pcf”‘(x), CT) (E. Since we ,also have’p(P(x), x) < e, from (2), the theo- 
rem is proved. 

In the same way (using induction over k) one could prove that, 
given any positive integer Fc, there exists an increasing sequence {no] 
of positive integers for which, simultaneously, f”i(x)+~, fni(x) 
-)x, * f - , f”:(~)+x, uniformly, for all xEX. In fact, substantially 
the same argument will show that this holds if each power nt 
@=l, - * - , k) is replaced by any polynomial (b t(n) of degree t, having 
integer coefficients, positive leading coefficient, and zero constant 
term. 

These results provide partial answers to the question, raised by 
Theorem I, as to what can be said about the sequence of integers n 
for which f”(x) is in a given neighbourhood of x, f being recurrent 
at x. Thus, under the hypotheses of Theorem IV, this sequence con- 
tains infinitely many squares, and in fact infinitely many kth powers. 
Query: Will it (under “reasonable” hypotheses-for example, non- 
periodicity) contain infinitely many primes? (For the special case in 
which X is the real line mod 1, and f(x) =x+(Y, where cy is a fixed 
irrational number, the answer is affirmative, though the proof is diffi- 
cult.6) 
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PURDUE UNIVERSITY 

6 This follows from results of Vinogradoff; cf. [a]. See also [5, p. 2341. 


