
ON CERTAIN LIMIT THEOREMS OF THE 
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1. Introduction. In this paper we prove the following four Iimit 
theorems : 

Let x1, x2, x3, - ’ - be independent identically distributed random’ 
variables each having mean 0 and standard deviation 1. Let 

then : 
I. 

Sk = xl + X2 -t- - ’ - + xk, 

where 

and 

lim prob. (max (~1, se, . . 6 , s,) < ar@j = U&Y) 
¶I-+- 

u&Y) = 0 (a s 0) 

(u 2 0); 

II‘ 

!e prob. {max ( 1 ~11, 1 SP 1, * . . , 1 s,, 1 ) < CY@~] = at(a) 

where 

u&Y) = 4 2 (- 1)” 
- exp { - (2% + l)f2/8a2] 

P mm* 2tn + 1 
(a B O), 

III. 

lim prob. 
sl’+ s,“+ * * * -t-s,’ 

Ku =ut(a), 
a-+- .* > 

where 
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1 This condition can be replaced by a weaker one. In fact, it is enough to assume 
that the X’s are such that the central limit theorem is applicable. 
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dff) 

and 

81(z, q) = 2 5 (- l)nq(2n+l~f/4 sin (211 + l)z, 
n-0 

e: = ; 81. 

IV. 

lim prob. 
*+I 

where the real Laplace transform of a4(a) is given by the formula 

S me-~~du4(a) = 2 ~j exp (- 6jz”‘“> (z > 01, 
0 j-l 

and where 6i is the jth positive root of the derivative of 

and 

1 + 3jky)dy 
Kj q 

36jP(6j) * 

The proofs of all these theorems follow the same pattern. It is first 
proved that the limiting distribution exists and is independent of the 
distribution of the X’S; then the distribution of the X’s is chosen con- 
veniently so that the limiting distribution can be calculated explicitly. 

This simple principle has, to the best of our knowledge, never been 
used befoi-e except in a paper by one of the authors in which IV is 
proved in all detail.2 

Theorems I and II generalize and simplify several results of Ba- 
chelier.3 Bachelier’s work in spite of being both inspired and impor- 

2 M. Kac, On the average of a certain Wienerfunctional and a related Z&&f theorem in 
calculus of probability, to appear in Trans. Amer. Math. Sot. vol. 59 (1946). 

3 L. Bachelier, Les lois desgrands nombres du calcul de probabilittfs, Paris, Gauthier- 
Wars, 1937. See in particular $$18, 21, 22, 3.5. This book contains no proofs but it 
gives references to earlier papers. For the modern and rigorous approach to these 
questions, based on the differential equation of diffusion, see the third and fourth 
chapters of A. Khintchine’s book Asymptotische Gesetze der Wahmcheinlichheits- 
recl:nung, Berlin, Springer, 1933. Our proofs, however, are entirely elementary and 
do not depend on the use of parabolic differential equations. 
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tant does not always satisfy the modern requirements of rigor. His 
methods often depend on replacing difference equations by differen- 
tial equations, a step not always easy to justify. 

The limiting distribution of III was discovered by Cameron and 
Martin in their work on Wiener space.4 Their result is equivalent 
to the conclusion of III if the X’s are assumed to be normally 
distributed. We use here a different method and make our considera- 
tions independent of the use of Wiener space. The Laplace transform 
of a,(a) has been recently calculated by Kac6 There seems to be very 
little hope that a reasonably simple expression for Us itself can be 
found. 

2. Proofs of I and II. Let Gr, Gz, G3, . = 1 be independent, normally 
distributed random variables each having mean and standard devia- 
tion 1 and let 

Rk = Gl+ Gz -I- . . . + GL 

Let furthermore E > 0 and 

P&Y) = prob. {max (sr, sz, . m . , s,) < cr~*‘~ 1. 

We first prove that for every integer k we have 

1 
prob. fmax (RI, . . m , Rk) < (LY - e)k112f - x 6 lim inf P,(a) 

n-+00 
(1) 

S lim sup P,(a) 5 prob. (max (RI, . * . , Rk) < CYP]. 
*+oo 

Let 

n .nj= j- [I 1 k 
(j = 0, 1, 2, . * . , k), 

and 

P,,,k(~l) = prob. {max (snl, s,,~, . . . , So&) < cm1J2). 

It follows immediately from the multidimensional central limit theo- 
rem that 

(2) lim P,,k(a) = prob. {max (RI, m 0 . , RJJ < Lyk1/2}, 
n-boa 

4 R. H. Cameron and W. T. Martin, The Wiener measure of Hilbert neighborhoods 
in the space of real continuous functions, Journal of Mathematics and Physics vol. 23 
(1944) pp. 195-209. 

5 kc. cit. footnote 2. It should be mentioned that the actual computation of the 
Laplace transform of U&Y) forms the major part of the proof of IV. 
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Let 

E, = prob. ( sr B 

We see immediately that 

n 
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cxn1/2, s1 < (yn1’2, . . . , srV1 < [Y&Z 1. 

2 -6 = 1 - P,(a) 5 1. 

For n; <r 5 ni+l we write 

E,=prob. {s,ZCYPZ~/~, s1<anl’2, . . . , s+~<cMI/~, 1 sni+,--s, 1 g&/z} 

+prob. (s~IcM@, s~<cYB~‘~, . . . , ~~-~<crltl/2, 1 sni+,-sr 1 <u@‘}. 

The first of these probabilities is obviously equal to E, prob. ( 1 s,~+~ 
-SKI 2 e~~r/~) and hence by Tchebychef’s inequality it is less than 

E,/ke2. 

Thus 

1 - P,,(a) S $ + x x prob. (s’ I CYR~‘*, s1 < cyn112, 
s ni<rsni+, 

. . . , sr4 < an1/2, 1 sni+% - sr 1 < ~n~‘~]. 

The double sum is obviously less than the probability that at least one 
of the sums snlr sn2, * * * , s,, is greater than ((y-e)~1’2, Hence 

1 - P&) < + -I- 1 - Pn,!da - E), 

and since P,(a) <Pn,k(~) we obtain. 

Pn,k(OL - 4 - l/k3 < P,(a) < P&a). 

Letting n-+a and using (2) we obtain (1). Let us now consider the 
particular case in which 

(3) prob. {Xi = 1) = prob. {Xj = - 11 = l/2. 

For these random variables the problem becomes the classical prob- 
lem of the ‘ruin of the player” and it is well known6 that I holds. 
Thus applying (1) to this particular case we get 

(4) 
prob. {max (RI, . . . , Rk) < (a - E) k112] - 1/e2k 

6 ai 6 prob. (max (RI, * - * , Rk) < CY~*/~]. 

R See for instance R. v. Mises, WahPscheinlichkeitsrchnung, Leipzig and Vienna, 
F. Deuticke, 1931. In particular pp, 499-506. 
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RepIacing (Y by cy + e we obtain 

prob. {max (RI, - . s , Rk) < *k1q $ u&Y + c) + 1/02K 

and hence, using (l), for the general case 

Ql(a! - 6) - l/sak 6 lim inf P&Y) 6 Ihn sup P,(a) 5 a& + E) +l/Gk. 
S-BP n-boo 

We complete the proof of I by letting K+a (while keeping e fixed) 
and by noting that al(a) is continuous. 

The proof of II proceeds in exactly the same manner. The only 
difference comes in calculating 

for the special random variables (3). The fact that in this case one 
is led to az(o) is again implied by the classical theory.’ 

We should like to call the reader’s attention to the fact that (4) 
provides a convenient and strong estimate for Pi in the case where 
the X’s are normally distributed. A similar estimate can be obtained 
by writing out in detail the proof of II. 

3. Proofs of III and IV. Let nl, fz2, . * + , nk have the same meaning 
as in $2. Consider the difference 

We have 

Using Schwartz’s inequality we obtain for n;-l <r 5ni 

m.e. ( [ si[, - s: [ ] 5 (m.e. ((sni - s,)2])1/2(m.e. {(sli + s,)*))l12 

E= (?Zi - r)l”(37 + 71i)l” < 2n112(ni - Y)“‘. 

Thus 

and therefore 

7 Lot. cit. footnote 6, p. 561. This case corresponds to the problem of random walk 
in the presence of two absorbing barriers. 
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m&e. { ] i&j } < C/P2, 

where C is a certain constant. 
This estimate of m.e. { 1 &I ) * lm pl ies immediately that for E > 0, 

prob. f 1 D, 1 I B) 5 C/ck112. 

We now write 

+ prob. s: < a, 1 D, 1 < e 

and notice that 

prob. 

$ prob. 

Thus 

prob. 

(5) 
c 

5 5 f prob. ni-&lf, < a + t . 

In exactly the same manner we obtain 

prob. 

(6) 
c 

< - + prob. = &‘I2 

Combining (5) and (6) we can write 

(7) 

prob. 
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Let us now find the limit, as n--t 00, of 

prob. f $ (ni - n&f; < /!.I} . 

Denote by d(E) the characteristic function of the distribution func- 
tion of Xi. 

The characteristic function of the joint distribution of 

that is, the mathematical expectation of 

is easily found to be 

(10) 

If we let n-+m (keeping k fixed) we find easily that (10) approaches 
(uniformly in every bounded region of the R-dimensional space) 

exp {-$&( &>? 
which can be recognized as the characteristic function of the joint 
distribution of 

(11) Rdk, h/k, - - - , Wk. 

(We recall that Ri=G1-l- . . . +Gi, where Gr, G2, . . . , Gk are inde- 
pendent, normahy distributed random variables each having mean 0 
and standard deviation 1). 

From the muItidimensiona1 continuity theorem for Fourier-Radon 
transforms, it follows that the joint distribution of the random vari- 
ables (9) approaches the joint distribution of the random variables 
(11). Thus the probability (8) approaches 

w prob. {f $ Rlj < 8) = Id@. 
1 1 

If in (7) we let n+a we obtain the inequality 



19461 LIMIT THEOREMS OF THE THEORY OF PROBABILITY 299 

c 
P&Y. - e) - - 6 lim inf prob. 

E&l’2 78-m 

5 lim sup prob. 
It-+- 

c 

which is analogous to the inequality (1) of 01. 
We complete the proof of III by showing that 

Pk(B) + m(8) 

for all fl. It was shown by Cameron and Martin* that the character- 
istic function of u&3) is 

(set (2iE)1’2)1’2 

where sec(2iE)l’* is defined by the familiar infinite product 

03 
n( 

2i[ 

> 

--I 

l 72-O - ((2% + l)r/2)2 

and zY* is defined in the plane with negative real axis removed and 
satisfying the requirement that zi’* is positive for real and positive z. 

It.is then sufficient to show that the characteristic function 

s 
** @%.%(lB) 

approaches (sec(2i~)‘/*)‘/* uniformly in every finite c-interval. We 
have 

.exp {-+$x:} i&ri.~.&rk 

8 Lot. cit. footnote 4. Actually, the characteristic function considered by Cameron 
and Martin is (sec(i~)l’~)*‘~ but their case corresponds to the normalization 
m.e.{G} =t/2 instead of m.e.{e] =l. 
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If in the last integral we introduce the coordinate system correspond- 
ing to the “principal axes” of the quadratic form 

(13) Yt+k(Yi-Yi-l)2 
2 

we notice readily that the integral will be reduced to the form 

where Xi, XZ, - * . , Xk are the eigenvalues of the matrix of the quad- 
ratic form (13). In the last integral the variables are separated and we 
obtain immediately 

(14) s 00 2i[ 

> 

-1/a 
e’@dp&?) = Xj - k2 , 

0 

The branch of 

05) (X, - 2if/k3-“2 

is determined by removing from. the complex l-plane the part of the 
imaginary axis between - co and -k”Xj/2 and requiring that (15) be 
positive for !j=y& y> -k%i/2. 

One could now calculate explicitly the eigenvalues Xi by elementary 
{but rather tedious) means and pass to the limit as k-, 00. We prefer 
a less elementary method which has the advantage that it is applica- 
ble to many cases where the explicit calculation of eigenvalues is im- 
possible. 

We first notice that putting E = 0 in (14) we obtain X,X2 . m - Xk = 1 
and hence 

Denoting by ((a,,)) the inverse matrix of the matrix of the quadratic 
form (13) we can verify directly that 

Gr = min (I, s) . 

Noticing that l/A,, . - a , l/L are the eigenvalues of ((a,,)) and using 
Hilbert’s approach to Fredholm’s theoryB we obtain that the quanti- 
ties l/K’Xj approach the eigenvalues of the integral equation 

9 See D. Hilbert, Grundzilge einer allgemeinen Theorie der linearen Integralgti- 
chungen, Berlin and Leipzig, Teubner, 1912. In particular see Theorem 2 on p. 14. 
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(16) S 
1 

min (s, t)f(t)dt = Xf(s). 
0 

Writing (16) in the form 

S 
6 

fj(W + s 
B S ,hdf = Vb) 

and differentiating twice with respect to s we obtain the differential 
equation 

VW + f(s) = 0 

subject to the boundary conditions f(0) =f’(l) =O. Thus the eigen- 
values are the numbers 

((2= + l)T/WP (n = 0, 1,2, - - - ) 

and it follows that 

S bvpk@) - 

00 
!?( 

2if 

> 
-l/2 

lim 1 - 

(17) 
R-m 0 (On + 

= ;seYc (23 ‘9 112, 

l)lrlq2 

where the determination of (sec(2it)1’2)1’2 was described above.‘0 This 
completes the proof of III. 

The proof of IV proceeds as follows. Denoting by Q&x) the proba- 
bility 

prob. 

we are led to the inequality 

prob. k-“‘2$~RjI <a--C 
-i > 

- -& S lim inf Q,,(a) 

(18 
1. MoD 

glimsupQ,(cu) Sprob. F”k[RjI <aft 
Cl 

-l--* 
n->- 1 ,k”2 

We then chose particular random variables whose distribution is given 
by the formula 

prob. (Xj < *l = &J’exp (- 21/2/ 211 )dti. 
--V 

10 That convergence in (17) is uniform in every finite Einterval also follows from 
Hilbert’s considerations quoted above. 
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For these random variables it was proved (lot. cit. footnote 2) that 

We complete the proof for the general case in the same way as in the 
proof of I. 

UNIVERSITY OF MICHIGAN AND 
CORNELL UNIVERSXTY 

11 Inasmuch as we have not proved that gd is continuous this statement should be 
qualified by adding that it holds at each continuity point of ~4. 

Added in proof: In the meantime Dr. Erd& succeeded in proving that o4 is every- 
where continuous. The proof is quite involved and will not be reproduced here. 


