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It has been proved that x;=,k-l cannot be an integer1 for any pair 
of positive integers m and n. More generally, ~:-o(m+kd)-l cannot 
be an integer.z We prove two theorems of a similar nature. 

THEOREM 1. There is only a finite number of integers n for which one 
or more of the elementary symmetric junctions of 1, l/2, l/3, * e ‘ ,* l/n 
is an integer. 

PROOF. Letxk,n denote the kth symmetric function of 1, l/2, l/3, 

**-I l/n. Since each term of C k,,, is contained k! times in the ex- 
pansion of (1 + l/2 + - . * + 1 /n)k, we have, ior k > 3 log n and n suffi- 
ciently large, 

E’ 

(1 + l/2 + ’ * * + l/n)” <(l,,+lw)‘< * 

k! k! 
, 

where the second inequality arises from the rrsual comparison of log n 
with the harmonic series, and the third ineciuality is implied by the 
hypothesis k >3 log n. 

Henceforth we take k < 3 log n. By a theorem of A. E. Ingham8 
there is a prime between x and x+x 5’8. This implies that there is a 
prime p between 1 +n/(k+ 1) and n/k for k <3 log n and n sufficiently 
large. Hence xk,n contains the term 

1 1 1 1 
-.- . . . - = ~. 1 
P 2P kP k!p” 

IGow (k!, p) = 1 since k<n/(k+l), and hence no other term in xa,, 
has a denominator divisible by pk. So if xk,,+=a/b, we know that 
pk\ b and $ja, which proves the theorem. 

By a similar but more complicated argument we can prove the same 

Received by the editors November 5,1945. 
1 Cf. IWya-Szegii, Aufgaben und Lelars&e aus der dnalysis, vol. 2, Berlin, 1925, 

chap. 8, p. 159, problem 250. 
* Cf. T. Kagell, Eine Eigensckaft gewissen Summery, Skrifter Oslo, no. 13 (1923) 

pp. 10-1s. 
3 On the d$erence between consecutive primes, Quart. J, Math. Oxford Ser. vol. 8 

(1937) p. 256. This result is actually stronger than n :cessary for our use here. The 
classical estimates will suffice. 
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result for the elementary symmetric functions of l/m, l/(m+ l), 
**-9 l/n, and of l/m, l/(m+d), l/(m+Zd), . * . ) l/(m+lad). 

It should be noted that c 2.3 is an integer; we know of no other 
integral case. Theorem 1 can be proved without the use of the prime 
number theorem, and this proof could be used to determine the bound 
on n, above which the result of the theorem holds. For smaller values 
of n, ck,,, could be checked, but the proof is complicated and the 
limits would be large. 

THEOREM 2. No two partial sums of the harmonic series can be equal; 
that is, it is not possible that 

(0 
l/m + l/Cm + 1) + - - * + l/n 

= l/x $ l/(x + 1) + * ’ ‘ + l/y. 

PROOF. We assume that n<x. Clearly if (1) has a solution, then 
any prime divisor of one of the denominators must divide another. 
Hence by Bertrand’s postulate we can be certain that y <2r- 1, 
since otherwise a prime p >n would be one of the denominators on the 
right side of (1). 

LEMMA. Any solution of (1) must satisfy y <c~+d’~ - 1. 

To prove this we use a theorem of Sylvester and Schur’ which 
states that if n>R, then in the set n, n+l, . . . , ~zfk- 1 there is an 
integer containing a prime divisor greater than k. In our case 
x>y--x+1, so that there is a prime p>y--x+1 which divides one 
and only one (say ap) of the integers 3t, x+1, x-l-2, . . * , y. Also p 
must divide one (say bp) of the set m, m+l, m+2, . . . ; n, and cer- 
tainly not more than one, since n-m <y-x. Then l/ap and l/bp are 
the only terms in equation (1) whose denominators are divisible by p, 
and since 

I/@ - 1/ap = (a - b)/abp, 

we conclude that p must divide a-b, whence a-b2p and a Lp+l. 
This implies that 

or 
x - 1 > (y - x + l)“, 

which proves the lemma. 
Next we obtain estimates for the expressions in (1). First we note 

that 

4 Cf. Paul Erd&, J. London Math. Sot. vol. 9 (1934) p. 282. 
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1% ~=log(l+~)-log(l-~) 

2 

(2j + 1)(2k)*~+l* 

Solving for l/R, and summing the result for k = m, m + 1, . * * , n, we 
obtain 

+ +’ . . . 
n 

(2) 

= log 

and similarly 

1 
‘+- 

(3) x 
x+1 

+..*+L 
Y 

2yf 1 
= log- - 

2x- 1 
+ 

2 

fz (2j + 1)(2K)zi+l 

Now (1) and our assumption that n <x imply that for any j 2 1, 

c 2 
k (2j + 1)(2k)“‘f’ 

is greater when summed over k =m, m-k 1, * . . , n than over k = 3c, 
x+1, - * - , y and so, comparing the right sides of (2) and (3), we see 
that 

(2n + 1)/(2m - 1) > (2y + 1)/(2x - 1). 

Thus, ignoring the sum on the right side of (3), we may write 

(212 + 1)(2X - (4) 1) 2 

log (2m - 1)(2y + 1) 
&I5 

k-m j-1 (2j + 1)(2k)2’+1 ’ 

The infinite sum on the right can be replaced by 4/3 times the first 
term, since each term is more than 4 times the next. The numerator 
of the fraction on the left exceeds the denominator by at least 2, 
since both are odd, and hence the left side exceeds 

( 2 

> 

1 

log 1 + (2m - 1)(2y + 1) > (2m - 1)(2y + 1) * 

Thus we have 
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1 a 
w 

(2m - 1)(2y 
-2 

+ 1) 
<c------ 2.4/3 

k-,,, 3(2k)’ 9m9 

But the last sum has fewer than x l/2 terms (by the lemma) and each 
term is not greater than l/x. And since (2~ - 1)(2y+l) <4my, in- 
equality (5) implies that 

1 1 xl’2 
-< -.- 
hY 9m2 x 

(6) 9mx112 < 4y. 

But also l/m~l/mC 0 . * +l/n<r’fz~(l/x)=1/~1~2,~~ that~“~<rn, 
which together with (6) implies that 9x<4y, which contradicts the 
lemma. This completes the proof of Theorem 2. 

In conclusion, we observe that l/2+1/3+1/4=1/12 (mod 1). 
Whether the sums in equation (1) are congruent (mod 1) for infinitely 
many values m, n, x, y is an unsolved problem. 
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