ON ARITHMETICAL PROPERTIES OF LAMBERT SERIES

BY

P. ERDOS, University of Syracuse. [Received 8 July, 1948.]

Let

$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{1-x^n}$$
 and $g(x) = \sum_{n=1}^{\infty} \frac{x^n}{1-x^n} \sin \frac{n\pi}{2}$.

Chowla* has proved that if t is an integer ≥ 5 , then g(1/t)is irrational. He also conjectures that for rational |x| < 1both f(x) and g(x) are irrational.

In the present note we prove the following

THEOREM. Let |t| > 1 be any integer. Then both f(1/t). and g(1/t) are irrational.

We only give the details for f(1/t); the proof for g(1/t)follows by the method of this note and that of Chowla.

Let us first assume that t is positive and that n is Put $k = [(\log n)^{1/10}]$ and let $p_1, p_2, ...,$ be the large. sequence of consecutive primes greater than $(\log n)^2$. Put

$$A = \left\{ {}_{1 \leq i \leq \frac{k(k+1)}{2}} p_i \right\}^t.$$

From elementary results about the distribution of primes it follows that $p_i < 2 \ (\log n)^2$ for $i \leq \frac{k(k+1)}{2}$. Thus by a simple computation we obtain

$$A < \left\{ 2 \ (\log n) \right\}^{tk^2} < e^{(\log n)^{1/4}}. \tag{1}$$

Consider now the following congruences :

$$x \equiv p_1^{t-1} \pmod{p_1^t}$$

$$x+1 \equiv (p_2 p_3)^{t-1} \{ \mod (p_2 p_3)^t \}$$

$$\dots$$

$$x+k-1 \equiv (p_u p_{u+1} \dots p_{u+k-1})^{t-1} \{ \mod (p_u \dots p_{u+k-1})^t \}, (2)$$
* Proc. Not. Inst. of Sciences of India 12 (1047)

Proc. Nat. Inst. of Sciences of India, 13 (1947).

P. ERDOS

where $u = \frac{k(k-1)}{2} + 1$. The integers less than *n* satisfying the congruences (2) are clearly of the form

$$x+y.A, o < x < A, o \leq y < \lceil n/A \rceil$$

We evidently have from (2) that for $o \leq j < k$

$$d(x+j+y.A) \equiv 0 \pmod{t^{j+1}},$$

where d(m) denotes, as usual, the number of divisors of mThus if we rewrite

$$\sum_{r+k+yA} \frac{d(r)}{t^r}$$

in the scale of t, then $t^{-x-yA+1}$ will be the lowest power of t which will occur.

Now if we proceed to determine y in such a way that

$$\sum_{r \geqslant x+k+yA} \frac{d(r)}{t^r} < \frac{\mathbf{I}}{t^{x+k/2+yA}}, \qquad (3)$$

then the representation of $\sum_{r=1}^{\infty} d(r)/t^r$ in the scale of t will

contain at least $\frac{1}{2}k$ consecutive zeros. Thus since $k = \lfloor (\log n)^{1/10} \rfloor$ can be made arbitrarily large, our number is irrational. [It is clear that the representation of $\sum_{r=1}^{\infty} \frac{d(r)}{t^r}$ in the scale of t is not finite, since

$$\sum_{x+k+yA} d(r)/t^r > 0.$$

+ 2

To complete our proof we will determine a value $y_0 < \lfloor n/A \rfloor$ satisfying (3). First of all we show that

$$\sum_{r>x+k+10\log n+yA}\frac{d(r)}{t'} < \frac{\mathbf{I}}{t^{x+k+yA}}.$$
 (4)

Now (4) follows by a simple computation by remarking that d(r) < r and $k = (\log n)^{1/10}$. Thus it will suffice to find a $y_0 < \lfloor n/A \rfloor$ for which

$$\sum \frac{d(r)}{t'} < \frac{1}{2} \frac{1}{t^{r+k/2+y_0A}},$$
 (5)

where the dash indicates that

 $x+k+y_0A \leq r \leq x+k+yA+ \text{ to log } n;$

clearly if y_0 satisfies (5) it also satisfies (3). Thus r lies in one of the $[10 \log n]$ arithmetic progressions

x+k+s+yA, $y < \lfloor n/A \rfloor$, $0 \le s < 10 \log n$. First we prove that there exists a $y_0 < \lfloor n/A \rfloor$ so that

 $d(x+k+s+y_0.A) < 2^{k/4}, \text{ for all } 0 \le s < 10 \log n.$ (6) It is easy to see that

(x+k+s, A) = 1 for all $0 \le s < 10 \log n$. For, if not, then there exists an s so that

 $x+k+s \equiv 0 \pmod{p_j}$, where $j \leq \frac{k(k+1)}{2}$.

But from (2) we have

9

 $x+i \equiv 0 \pmod{p_j}$ for some i < k. Thus $k+s-i \equiv 0 \pmod{p_j}$, which is impossible since $0 < k+s-i < 11 \log n$ and $p_j > (\log n)^2$.

This completes the proof.

Put $x+k+s = \vartheta$. We have from $(\vartheta, A) = I$, $\sum_{y \leq \lfloor n/A \rfloor} d(\vartheta + yA) < 2 \sum_{l=1}^{\sqrt{n}} \left(\frac{n}{Al} + I\right) = c \frac{n \log n}{A},$

since $A < n^{\epsilon}$. Thus the number of y's for which

$$d(\vartheta + yA) > 2^{k/4}$$
 is less then $c \frac{n \log n}{A \cdot 2^{k/4}}$,

and the number of y's for which for some s $d(x+k+y+A) > 2^{k/4}$ is less than

$$\operatorname{Ioc} \frac{n \ (\log n)^2}{A \cdot 2^{k/4}} < \frac{1}{2} \frac{n}{A} \cdot \frac{1}{2} \frac$$

Thus there clearly exists $a_{y_0} < \lfloor n/A \rfloor$ satisfying (6). Now clearly

$$\sum' \frac{d(r)}{t^r} < 2^{k/4} \sum' \frac{1}{t^r} < \frac{1}{2} \frac{1}{t^{r+k/2+y_0/4}},$$

P. ERDOS

which proves (5) and completes the proof of the theorem for t > 1.

If t is negative the proof is similar to the one just given except that we have to make sure that the expansion of ∞

 $\sum_{r=1}^{\infty} d(r)/t^r$ in the scale of t is not finite. This is certainly

the case if we can prove the existence of a $y_0 < \lfloor n/A \rfloor$ satisfying (6), for which

$$\sum_{r>x+k+s \in A} d(r)/t^r \neq 0.$$

This can be done by methods similar to those used above. We do not give the details.

The analogous problems about

$$\sum_{n=1}^{\infty} \frac{\phi(n)}{t^n}, \sum_{n=1}^{\infty} \frac{\phi'(n)}{t^n}, \sum_{n=1}^{\infty} \frac{\vartheta(n)}{t^n},$$

where $\phi(n)$ denotes Euler's ϕ -function, $\phi'(n)$ denotes the sum of the divisors of n, and $\vartheta(n)$ denotes the number of prime factors of n, seem to present difficulties.

66