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Let fl, 12, - - * , r, be the roots of a polynomial f(z) with complex 
coefficients, and let RI, Rz, * . * , R,-l be the roots of its derivative. 
N. G. de Bruijnl has proved that 

(1) 

when f(z) has real coefficients; he raises the question whether this 
holds in general. We prove that this inequality holds when f(z) has 
complex coefficients; also that (1) is an equality only when the roots 
of f(z) are not both above and below the real axis. An immediate 
consequence of this is that if D&) represents the (positive) distance 
from e to any straight line 2 in the complex plane, then 

with the equality holding only when the Pj are not located on both 
sides of 2. Further, if for any point A in the complex plane, DA(Z) 
represents the distance from z to A, then 

with the equality holding only when all the yi lie on a half line 
emanating from A. 

If A is taken as the origin, we have 

with m= 1. This inequality, with m = 1, 2, 3, . . . , has been estab- 
lished by H. E. Bray2 for the special case in which f(z) is a real 

Presented to the Society, April 26, 1947; received by the editors May 27, 1947. 
1 On the zeros of u polynomial and of ils derieultiwe, K. Akademie van Wetenschappen, 

Proceedings vol. 49 (1946) pp. 1037-1044. Added in proof: In a second paper by 
de Bruijn and T. A. Springer, On Ik zeros of a polynomial and of its derivative II, 
Ibid. vol. 50 (1947) pp. 264-270, the results of the present paper are obtained, and the 
inequality following (3) is obtained for any nz L 1. 

s On the seros of u polyrwnriol U~KI its derivative, Amer. J. Math. vol. 53 (1931) pp. 
864-872. 

184 



THE ROOTS OF A POLYNOMIAL AND ITS DERIVATIVE 185 

polynomial with non-negative real roots. 
If (3) is applied with A located successively at the roots of f(z), and 

if these inequalities are summed, and if this process is repeated with 
A located successively at the roots of f’(z), it is seen that the two 
resulting inequalities imply that 

with equality onIy if all roots of f(z) are equal. It seems likely that 
this inequality holds with the factors l/n2 and l/(x - 1)” replaced 
by l/C,,2 and l/L1.2, but we have not been able to prove this. 

We now begin the proof of (1). 

LEMMA 1. In case all the roots off(z) lie on one side of or on the real 
axis, relation (1) holds with the equality sign. In case the roots lie both 
above and below the real axis, but the roots of f’(z) lie on one side of or 
on the real axis, relation (1) holds with the inequaiity sign. 

PROOF. We recall Gauss’ theorem that the roots of f’(z) lie inside 
or on the convex polygon determined by the roots of f(z) ; and they 
are on the polygon only when f(z) has a multiple root or when all the 
roots of f(z) lie on a line. Hence in the fikst statement in the lemma, 
the roots of f’(z) lie on one side of or on the real axis. B‘y relating the 
sum of the roots of a polynomial to the coefficients of the two highest 
powers, we see that 

which proves the first statement in the lemma. The second state- 
ment is also a consequence of (4), because in that case all terms on 
the right side of (4) have like signs, whereas there are mixed signs in 
the sum on the left. 

LEMMA 2. Inequality (1) is epuivatent to 

where c’ designates the sum over the roots lying below the real axis. 
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Equality in (1) implies equality in (5)) and conversely. 

PROOF. Subtract (4) from (1). We note in passing that the addition 
of (4) to (1) implies a result (5) with c’ representing the sum over 
the roots above the real axis. 

We now proceed by induction, and assume that a result correspond- 
ing to (5) holds for all polynomials of degree less than n, with 
equality only when the roots are not on both sides of the real axis. 
(Note that this is true for quadratic polynomials.) Then we suppose, 
using Lemmas 1 and 2, that for some polyn’omial f(z) of degree n 
with roots rj on both sides of the real axis and derivative roots also 
on both sides 

where RI, Rz, . - * , R, are the roots of f’(z) which lie below the real 
axis. We show that these assumptions lead to a contradiction, 

In addition to the hypotheses just stated, we shall use induction 
on the number of roots of f(z) lying above the real axis, and assume 
first thatf(z) has exactly one such root, say ~1: thus the first sum in F 
ranges over j=2, 3, . * * , n. We consider what happens to F in (6) 
when ~1 is moved slightly, the other roots of f(z) remaining fixed. 

The first possibility is that c&r 1 I(Rj) 1 for exactly these Rj does 
not change no matter in what direction the root ~1 is given a slight 
motion from its original position. Consider the roots Rj of f’(e), each 
Rj being an analytic function3 of rl; More precisely, if ~1 moves to a 
value r in the neighborhood, then the Rj move to positions Sj given by 

(7) r = r1 + t=, Sj = Ri + blit f bzit” + . * . , 

a! being a positive integer. For sufficiently small values of t, our as- 
sumption that 

is the same as cfcl I(Rj) = c&i I(Sj), because the Rj and Sj are 
below the real axis, Thus for small values of the complex number t, 

1 f= bl,t + 2 b& + . . . = 0 
j=l j=l > 

3 Cf. G. A. Bliss, AZgebr& fundions, Amer. Math. Sac, Colloquium Publications, 
vol. 16, Theorem 13.1, pu 32. 
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and consequently Cblj= 0, C62j=O, and SO on. By analytic con- 
tinuation (8) holds when rl is moved to a position r on the real axis. 
But in this case those roots of f’(z) which were on or above the real 
axis, namely Rq+l, b . * , Rn-l, have moved to positions Sp+lr . - - , 
S,-1 below the real axis, so that we have 

+ g I GTi> I - -&z I IO-i> I < 0, 
3 

which contradicts Lemma 1. 
Next suppose that c&r II(Rj)\ changes when rl is moved to a 

neighboring position. Then (7) implies that rr can be moved in such 
a direction as to decrease c&r I(&) and thus decrease F in (6), 
because 

Let us move rl along a path so as to decrease F. It is clear that such 
a path will not lead to the real axis, because of Lemma 1, so we need 
treat only the possibilities of rl moving to infinity along a path in the 
upper half plane. 

Consider, then, the .polynomial f(z) with roots T, ~2, ~3, - - - , I,, 

where 1 r 1 is very large relative to 1 ril, j=Z, 3, * * . , n. If g(z) is 
the polynomial with roots yz, ~3, . . . , ra then 

(9) f’(Z) = g(z) + (2 - W(z). 

Consider any fixed circle which has center at a root of g’(z), but which 
does not pass through any root of g’(z). On the circumference of such 
a circle, 1 (z-r>g’(z) 1 > 1 g(z) [ f or sufficiently large r. By Rouch&‘s 
theorem each such circle contains as many roots of f’(z) as of g’(z). 
Thus if tr, t2, - . - , L-2 are the roots of g’(z), all roots except one of 
f’(z) can be written as 

t1 + er, t2 -I- C2r, - * * , L-2 + ha-27 

where every ejr tends to 0 as r tends to infinity. If the other root of 
f’(z) is denoted by R, then since 

; (T + y2 + y3 + - * 

n-2 

R+C(ti+ajr) 9 

i=l > 

we see that R is approximately (n - l)r/n, with a bounded error as 
r tends to infinity. 

We first discuss the case where R is above the real axis. By our in- 
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duction hypothesis applied to the polynomial g(z), 

Turning tof(z), we see that the function F in (6) has the value 

since we are assuming that R has positive imaginary part. But the ejr 
are arbitrarily small, so (10) implies that (11) is positive, and this 
contradicts our assumption that F is negative. 

If, on the other hand, R is below the real axis, we argue as follows. 
Since the roots of g(z) are on or below (with at least one below) the 
real axis, by Gauss’ theorem a particular root tj of g’(z) is on the real 
axis only if it is a multiple root of g(z), in which case it is a multiple 
root of f(z) and the corresponding eir =O. Thus we can take r suffi- 
ciently large so that the roots tj+tjl of f’(z) are all on or below the 
real axis. Hence all the roots off’(z) lie on or below the real axis, and 
we use the second part of Lemma 1 to complete the proof. 

Having completed the proof of (5) in case there is exactly one root 
of f(z) with positive imaginary part, let us now use induction and 
assume that (5) holds for all polynomials of degree n with k - 1 roots 
above the real axis. Then consider any polynomial of degree n with 
k roots, rl, ~2, . * * , rh, above the real axis. We proceed as in the 
case where there is exactly one root with positive imaginary part. 
We move rl to the real axis if (a) such motion does not alter c&r I(&) ; 
otherwise (b) we move rl along a path which decreases this sum. In 
case (a) the problem is reduced to that of a polynomial with K - 1 
roots having positive imaginary part: likewise in case (b) when rl 
moves along a path crossing or touching the real axis. (Note that if 
by such motion of rl, either one or more of the Ri for ~,<cJ move to 
positions above the real axis or one or more of the Rj forj>p move to 
positions below the real axis, such alterations work in our favor in 
decreasing F.) Finally, if in case (b) rl moves to infinity in the upper 
half plane, we handle the problem in the following way. 

As before we use the notation r for the new location of rr, and 
tj+Ej+ (j=l, 2, ’ ’ ’ , ?Z- 2) and R for the roots of f’(z). In case R is 
above the real axis, we argue as above, with (10) and (11) suitably 
altered. 

In case R is below the real axis, the argument for the case of exactly 
one root with positive imaginary part is inadequate. If c” desig- 
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nates the sum over those of the indicated roots which lie above the 
real axis, then 

by the induction hypothesis applied to g(z) and the remark following 
the proof of Lemma 2. Define a by 

a = p 1 Z(rJ 1 - ngt, 1 z(tj) 1. 
j=l 

Clearly a >0, by (12), and u is independent of r, R, and the ejr. 
Choose r sufficiently large SO that a >n cy1-12 1 ejT\ . Then (12) implies 
that 

j=2 j=l 

< (92 - 1) gi’ ] Z(ri) 1 - n n2tf 1 ZCti) I - n n$yl eir I 
j-l 

This is the inequality we want for the roots of f(z) andf’(z) provided 
we add I I(r) I to the first sum, which works in our favor. This com- 
pletes the proof of (5) and (1). 

To prove (2), we observe that if the roots of f(z) are translated or 
rotated about the origin, the roots of f’(z) undergo an identical 
translation or rotation. This remark not only proves (2) but also 
shows that we need prove (3) only when A is the origin. Next we 
note that if II(0, r) denotes the distance from I to a line through the 
origin with direction angle 0, then 

s 

27D(e, r)dl9 = 4 1 r I. 
0 

Thus (3) is obtained from (2) by integration over the direction angle. 
Since there is equality in (2) only if all the Tj are on the same side 
of 1, we see that there is equality in (3) only if the rj lie on a half line 
outofd. 

REMARK. Letf(z) have exactly one root, say r-1, below the real axis: 
let p2 be the root, apart from rl, with least imaginary part. Then 
there is no root of f’(z) below the line 
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y = Q-1) + f I(rz - r1). 
n 

This can be seen by translating all roots a distance I(rz) in the 
direction of the negative imaginary axis, and by application of 
(5). It can also be obtained directly from the well known relation 
Cj(R-rj)-'=O. 
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