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On some applications of Brun’s method').
By P. ERDOS in Syracuse (N. Y., U.S. A)

Denote by P(k, I) the least prime in the arithmetic progression
kx4l Subsequently we’ shall always assume O<I<k, (Lk)=1.
TuRAN?) proved that under assumption of the generalised RIEMANN hy-
pothesis we have for every fixed positive

Pk, ) <k (log k)?+¢

except possible for o(@(k)) progressions. He also remarks that it
immediately follows from the prime number theorem that P(k, ) <
< (1—e) @(k) log k does not hold for almest all progressions, since
the number of primes not exceeding (1—¢) (k) logk is less than
(1——%)(;3(#'{) (almost all will mean throughout: with the exception of
0 (p(k)) values of I). It seems very likely that for any constant C,
Pk, 1) < Cep(k) log k does not hold for almost all progressions. But at
present [ cannot even disprove the existence of infinitely many & so
that P(k, 1) < p(k) log k holds for almost all values of . On the other
hand, [ can prove the following weaker

Theorem 1. There exists a constant ¢, >0 and infinitely many
integers k, such thai

(M Pk h=(1+ca)pk) logk
does not hold for almost all I In other words, there exists a constant
¢ and infinitely many values of £ so that P(k, 1) > (1+¢)¢e(k)logk
for more than c,@ (k) values of .

Further we shall prove

Theorem 2. Let ¢,> 0 be any constani. Then for ¢,p€k) values
of 1 (c==c,(cs))
2 Pk, l)<cp(k)logk.

1) Recently A, SeLBErG deduced (and sharpened) some results of BRUN in a
surprisingly simple way.

1) P. Turix, Uber die Primzahlen der arithmetischen Progressionen,. these
Acta, 8 (1937), p. 226—235.
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Remark. It easily follows from the prime number theorem that
Pk, )=o0(p(k)logk) can hold only for o(p(k)) values of L. Thus
Theorem 2 is in some sense the best possible.

Next we investigate a different question. Since the integers
nl+42, ...,nl4+n are all composife, it follows immediately that
limsup (p,.,—p,) ==oo. SIERPINSKI®) proved that lim sup (min (pys1—Pa,
DPu—P,-1)) =100, by using Dirichlet’s theorem according to which every
arithmetic progression whose first term and difference are relatively
prime contains infinitely many primes. In other words, as SIERPINSKI
puts it, there are infinitely many primes isolated from both sides. By
using Bran s method we shall prove the following sharper

Theorem 3. Let ¢; be any constant and n sufficiently large: Then
there exist a constant c;==cg(¢;), [c;logn} primes p<pr.<...<
< Prsr < 1, 1= ¢ logn)], so that

Priior—DPrai > Cs, i=0,1,...,r—L

One final remark: In a previous paper*) 1 proved that
T e

3) lim inf “Bei <l.
By the same method we can show that for any r
4 2 = p)ﬂ'r—pn . & -
(4) lim mf“rlog-n <Hd=dr)<1
We do not give the defails of the proof, since it is quite similar to that
of (3). It can be conjectured that
| o se Dot ™ O .
67 hmmf__riog —al=g
where ¢, is a constant independent of r (in fact, it is very likely that
the liminf in (8) is 0).

Proof of Theorem 2. (It is more-convenient to prove Theorem 2
first) Denote x=c,p(k)dogk; p., p., ... will denote the sequence of
consecutive primes. Further A (k) denote the number of solutions of
the cengruence

p;i—pi=0 (mod k), p<p;=x
B,(k, I) denote the number of primes p=z in the arithmetic progression
kx-1. Clearly

©) AW =3 5 Bk D Bk, )—1).

) W. SiERrINSKI, Remarque sur la répartition des nombres premiers, Colloquium
Math, 1 (1948), p. 193194,

%) P. Erpds, The difference of consecutive primes, Duke Muth. Journal, &
(1940), p. 438—441.
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If Theorem 2 is not true, then for a suitable sequence k; of in-
tegers B, (k;, I)=0 for all but o(p(k;)) values of & Let hy<k, < ...
be such a sequence. The number of integers / with B,(k, )30 we
denote by & ¢(k;), where lim &, =0. We have by the theorem of CHEBISHEF
(n(2) denotes the number of primes not exceeding 2)

(M erpk) > 2 Bk, )= m(x) — (k) > cop (),

where »(k,) denotes the number of prime factors of &, (»(k) <clogk).
Further from (6) and (7)

A= 3 5Bk D Bk, H— Dz = 2(0)+ 3 (Blk, D)
and applying Schwarz’s inequality

| (X Bue, O
® Ak)>—nl) g > >— (i) + ZE
B:(ki, )=1

c c
> — g k)+ 5, 9(k) > o k).
Now we shall prove that for every &
) A, (k) < e p(K)
which contradicts (8), and this contradiction completes the proof of

Theorem 2,
Denote by C,(r) the number of solutions of

pl,"“—"pi‘: kT, 1 <p5 <pjéx-
Clearly

(10) AW=ZC0), 1srs-S20IBE

Denote by C.(r) the number of primes p =x so that p,+kr is also a
prime. Evidently

(11 C.n=C.(n-
We obtain by a result of SCHNIRELMANN?®) that
- 1 9 (k)
(12) - CO) < og (‘ogx)‘ ?g(w p]“" ‘logkpg( )
Thus from (10), (1) and (12)
Ays 3 CO <oy . (1+4)=

]grg—— wptr

Sy T, "’U‘) H(l+ ] > H(l+ )

]f}gk légzpf

) E. Lanpau, Die Goldbachsche Vermutung und der Schnirelmannsche Satz,
Gittinger Nachrichten, 1930, p. 255—276.
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Now ¢ (k) PIII(H- ") kﬂ(l—p—]<k Thus

plk

k< X
A(k)<cml ngl [1+ )<C“T5g_k,g{‘W<catp(k)’
which proves (9) and completes the proof of Theorem 2.

Proof of Theorem 1 (in one or two places we will suppress some
of the details of the proof). Let n be any large integer. We shall prove
that between n and 2n there exists always an integer ¥ which satisfies
the conditions of Theorem 1. Let 6 be a small but fixed number (in-
dependent of n). Put y=4dnlogn. As in the proof of Theorem 2, A, (m)
denote the number of solutions of the congruence

pi—p.=0(mod m), p.<p;=y.
First we are going to estimate from below

2n
(13) A= DA (m).
Denote by D,(ry the number of soluiions of

pf—-.pt':rmr Pi<P,-£='y, H§M$2ﬂ.
Clearly

: ’ ¥y g
(14) A= 2'D,(n, gire (or Eo logn]

First we estimate D,(r). Let p;< % be an arbitrary prime. It immedia-

tely follows by a simple calculation from the results of PAGE®) on the
primes in an arithmetic progression that the number of primes of the
form

pi+rm a=m=2n

is greater than ¢, To:gl_n—' also these primes are all <y, Thus from

x(y)>c:sl y > ¢, 6n we obftain

ogy
(15) D,(1) > cud -13%
and from (14) and (15) (rs T‘:' log n]
(16) A>cpdin’.

§) A. Paax, The number of primes in an arithmetic progression, Proceedings
London Math, Society, (2) 39 (1935), p. 116—141.
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On the other hand as in the proof of (9) we obtain for n=m=2n
dm ]2 m? m
A —— | (M) = €1 0% — - = 02N ——;
(0 Ay <ca ] plm)— st T — cugrn L

we obtain (17) by putting dnlogn=cy—— om @(m), and use the same

¢ (m)
method we used in proving (9).
Henee from (17)

18 TA M) <endin D> —_
where the dash indicates that the summation is extended over the m

ﬁm)>2%' Now

Thus we have from (19) by a simple argument (putting 2n = u)

satisfying n=m=2n,

(20) b (m) < Cudm.

Hence from (18) and (20) (m=2n)

1) 2" A (m) < cyd®n?

Thus from (16) and (21), if d is sufficiently small,

22 A3 A(m)>2 Cie gops.

From (22) we obtain that there exists an m,, n=m,< 2n, ?%051%
(]

for which
(23) A, (mo) > = C“’ 6m

Now we show that m, satlshes the conditions of Theorem 1. In
other words we shall show that
(24) P(m,, )< (1 +¢,) ¢(m,) log m,
does not hold for c,p(m,) values of I/, where ¢, and ¢; are suitable
constants (c,==¢;(c,)).

We shall prove that (24) is true for ¢,=¢;=3d%. Put

2= (1 4+ d%%) ¢(m,) log m,.

We have from the piime number theorem
(25) 7(2) < (14 26*) p(m,).
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Thus to prove our assertion it will clearly” suffice to show that there
are at least 30%°¢(m,) progressions myd-1 each of which contain more
than one prime not exceeding z (i. e. it immediately follows from (25)
that there are at least 020 (m,) progressions m,d I for which P(m,, I) > 2).

We have by the definition of m,, ¢(m;)=4dm,. Thus yp=z.
Hence by (23)

(26) A(my> —02‘—3“62:1.
Next we prove

B.(m,, n
7 LEZ( '(4" )]<c,4-3;.

Suppose that (27) is already proved. Then we prove Theorem 1 as
follows: We have by (6) and (26)

@) By ) (Blme, h— 1) =A,(ms) > S .

Thus if there would be less than 36*°g(m,) values of / with B,(m;,,1) > 1
(in fact with B,(m,,l)=4), we would obtain from (28) by a simple
calculation, using. Schwarz’s inequality as in (8) and using ¢(m,) >
>4dm,=4dn,

it 4
(20) 315 0. fss{ J) P () >

d e
which for sufficiently small ¢ contradicts (27) and thus completes the
proof of Theorem 1.
Now we only have to prove (27). Denote by F,(r, ry, r3) the
number of primes p; so that
pitrim,, pitramy, pit-rsmg
are all primes not exceeding 2. Clearly

(30) ., Jz‘r F.(ry, 1, ;-3):2 [Bg(m‘;i [))
Further
(31) F ity L Y S Fltsna 15)

where F,(r;, r;, ;) denotes the number of primes p, =<z so that

Pi+nmy, piA-Tamy, .+ T,
are also primes. We obtain by Brun’s method”) that

v . 4
(32) F:(rhri: r3)>021_(16i:7){‘ H (1+__]:

p
Bmgreryra(rg-m ) (rg-v ) {rs—ral

T .P. Erpos, On the easier Waring problem for powers of primes, Proceedings
Cambridge . Philosophical Society, 33 (1937), p. 6—12, lemma 2, p. 8.
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Hence by the definition of z and m, ( I7 [1+-‘-‘-) < %J

g|my

- n
(33‘ Fz(fv rﬁ: rl) <cﬁ!) (‘Ogﬂ)s 65 H( )

where in ]Z,- p runs through the divisors of r,nry(r—r) (n—n) (.~ 1)
From (33) we evidently have

&
(34) LgrgLF(rhrﬂ?rS)'( 6259 (logn)s Z H(l‘“i"' )
Now by a simple argument we obtain from Iemma 1 of my paper
“On the easier Waring’s problem for powers of primes”®) that

(35) 311, (1+§] < eqlogn).
=

Thus finally from (33), (34) and (35) we obtain (27), which completes
the proof of Theorem 1.

Our proof of Theorem 1 very strongly used the special properties
of the primes. Perhaps the following question would be of some inter-
est: Let ¢,,q,,... bea sequence of integers so that the number of

n
logn o(m). Let (k,)=1 and
P(k, 1) denote the least ¢ inthe arithmetic progression kx-/. Is it true
that ther¢ exists an infinite sequence of integers &, so that
Pk, I < (1+6) p(k:)logk;
does not hold for c,p(k;) values of /? Perhaps some assumption like

(4., 9;) =1 might be necessary.
Proof of Theorem 3. It follows from the result of SCHNIRELMANN )

that the number of solutions of
Prir—Pn=Cs, Prn=n

g’s, not exceeding n, .equals —

is less than ¢, ———5. Thus since =(n)> ¢y }og , we immediately

(log )
obtain Theorem 3.

(Recevied January 12, 1949)

9 L. c ).




