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On s~rne applkations ~,f Brun’s method’). 
By P. ERD~S in Syracuse (N. Y.,U. S. A.) 

Denote by P(k, l) the least prime in the arithmetic progression 
kx+I. Subsequently we’ shall aLways assume 0 < I < k, (I, k) = 1. 
TuRAN~) .proved that under assumption of the generalised RIEMANN hy- 
pothesis we have for every fixed positive E 

P(k, 1) < k (log k)2+- 
except possible for o (y(Q) progressions. He also remarks that it 
immediately follows from the prime number theorem that P(k, r) < 
< (1 -e) (p(k) log k does not hold for almost all progressions, since 
the number of primes not exceeding (I-E) rp(k) Jog k is less than 

( 1 
I -$ q(k) (almost all will mean throughout: with the exception of 

b(y(k)) values of f). It seems very likely that for any constant C, 
P(k, /) < Crp(k) log k does not hold for almost all progressions. But at 
present I cannot even disprove the existence of infinitely many k so 
that P(k, f) < v(k) log k holds For almost all values of I. On the other 
hand, I can prove the following weaker 

T h e o r e m 1. There exisfs cz cunstani cl 3 0 and infinitefy many 
infe.gers k, such fhal 

(1) PM Os(1 -tc,)M I%k 
does nof hold for almost all 1. In other words, there exists a constant 
c, and infinitely many values of k so that P(k, 1) > (1 +c,) y(k) log k 
for more than c,q(k) values of 1. 

Further we shall prove 
Theorem 2. Let c3 > 0 be any constant. Then for &y(k) values 

of l GC4 = Cd (cd) 
(2) P (k, I) < cgp (k) log k. 

1) Recently A. SELBERG deduced (and sharpened) some results of BRUN in a 
ourprisik& simple way. 

s) P. TURIN, tiber die Primzahlen der arithmetischen Progressionen,. fhese 
Acfa, 8 (1937), p. 226-235. 
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Remark, It ,easiIy follows froth the prime number theorem that 
P(k, I).=o(cp(k) log-k) tin hold only for D(F(@) values of 1. Thus 
Theorem 2 is in some’ sense the best possible. 

Next we investigate a different q.qe$tion. Since fhe integers 
n!-+2, . ‘ ., n’!-+n. .are. all composite, if, follows immediately that 
Ii m sup (p,+i -PJ = M. SIEIIPINSKI~) prgved that lim sup (min (pli+I--p,,, 
p,,--p,,-l))=oo, by using Dkich!&‘s theorem according to which every 
arithmetic progression whuse first term and difference are relatively 
prime .contains infinitely many .primes. In other words, as SIERPIHW 
puts it, there are infinitely many primes isolated frdm both sides. By 
using Brun s method we sHall prove the following sharper 

.T h e o r e.m 3. Let 4 be nny co&ant and n sufficiently large= Then 
there exist a clxzstffnt c, = c8.(c5),, Ic, log n] primes p& .<~pk+l <, . . , y 
< pk+r < n, r = [C6 log72], so f/z& 

PkSiC1 -Pk+i > $, i=O, 1, . . . . . r*-l. 

One final r e m ark : In a previous papera) I proved that 

(3) lim inf “+1-p* < 1, 
log n 

By the sarne method we can show that for any r 

lim inf &.r-pn < 8 = 8(r) 5 1. 
riogn 

We do ntjt give. the det,ails of the proof, since it is quite similar to that 
of (3). It can be conjectured that 

where cs is a constant independent of t (in fact, it is very likely that 
the lim inf in (5) is 0). 

Proof of Theorem 2. (It is more.convenient to prove Theorem 2 
first.) Denote x = c, 4p (I?) Iog k; pl,, pa, . . . wiH denote the sequence of 
consecutive primes. Further A#) denote the number of solutions of 
the cngruence 

pi-pi E 0 (mod k), pi sCp~~:X~ 
&(k, I) denote the iumber of primes pbz in the arithmetic piogresslon 
kx + 1. Cieafy 

a) W. SIERPI~CI, Remarque sur la tiparfition des nombres pwmiers, Coffoquirim 
Muff&, 1 (1948), p. 193-194. 

4) P. Fkt~dB, The difference of consecutive primes, buke Hafh. Journal, 8 
(1940), p. 438-441. 
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If Theorem 2 is not true, then for a suitablt sequence ki of in- 
tegers B,(ki, I) = 0 for all but o (~Fki)) values of 1. Let. kl < k2,< . , . 
be such a sequence. The number of integers I with B,(ki, I) +O we 
denote by E, q$ki), where lim ti = 0. We have by the theorem of CHEBISHEF 

(n(z) denotes the number of primes not exceeding z) 

(7) wp(k) > T WL 0 =4+-9(ki~ > c~cpt~i), 

where v(ki) denotes the namber of prime factors of ki (v(k) < c log& 
Further from (6) and (7) 

A,(k,)=~~B,(k~,I)(B.(k.,1)-l)>--nix)+~~(B,(k.,I))” 

and applying Schwarz’s inequality 

> - C;~(ki) + ~ ul(ki) > ~.Cp(k,). 

* 
I 

Now we shall prove that for every k 

(9) A,(k) < c;*cpt4 
which contradicts (a), and this contradiction completes the proof of 
Theorem 2. 

Denote by C,(r) the number of solutions of 

Clearly 
pj-‘pi,= k7, 1 <pi <pj~X. 

00) A,(k)=~C&), llr~ c3cp(k;10gk . 

Denote by C:(r) the number of primes p 5 x so that p++ kf is also a 
prime. Evidently 

(1.1) C&)d c;(r). 
We obtain by a result of SCHNIRELMANN~) that 

?‘lius from (lo), .(.I 1) and (12) 

6) E. &DAU, Die Gofdbachsche ‘Vermutung und der Scbnirelmannsche Satz, 
GOtfinger Nachrichten, 1930, p. 255-276. 
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which proves (9) and completes the proof of Theorem 2. 
Pr 0 of of Theorem 1 (in one or two places we will suppress some 

of the details of the proof). Let n be any large integer. We shali prove 
that between n and 2n there exists always an integer k which satisfies 
the conditions of Theorem 1. Let 8 be a small but fixed number (in- 
dependent of n). Put y= Bn logn. As in the proof of Theorem 2, A,(m) 
denote the number of solutions of the congruence 

pi-p, G 0 (hod m)j pi < p, 4 y. 

First we are going to estimate from below 

(13) A=i;:A,(m). 

Denote by D,(f)’ the number of skiions of 

Pj-Pi=r~, pi<:pj4y, I1~=mr2n, 
Clearly 

First we estimate D,(r). Let p; < -$- be an arbitrary prime. It immedia- 

tely follows by a simple calculation from the results of PAGES) on the 
primes in an arithmetic progression that the number of primes of the 
form 

p;+rm, ns’ms2n 

is greater than ~;1 -!f- 
fogn * 

also these primes are all dy, Thus from 
. 

Y 
a(Y) > k- 

logy 
> cl6 dn we obtain 

(155 D,(r) > c,dL logn 

and from (14) and (15) (r&g log fz) 

(16) A > c16dzne. 

6) A. Pug, ‘lBe number of primes in an arithmetic progression, Proceedings 
London Mizfh. Society, (2) 3 (1933, p. 116- 141. 
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On the other hand as in the proof of (9) we obtain for n~=m~2n 

(17) 
Bm 2 

Mm) < cm - 
i 1 

rns 
.Y w 

(r(m) =clgd2--- 
9(m) 

=c,S”nrn. 
WO ’ 

sm we obtain (17) by putting dn logn =c~ - 
f?(m) 

y(m), and use the same 
method we used in proving (9). 

Hence from (17) 

(18) 2’ A,(m) < c,d2n 2’” 
9W 

where the dash indicates that the summation is extended over the m 

satisfying m n I m s 212, - 1 
v(m) ‘46’ Now 

(1% ~~.(~~=,~~a(l+$+...)‘< 

cm&g $7(1++) ~~~~$L~. 

Thus we have from (19) by a simpte argument (putting 2n= U) 

cw 2’ --E-- < c,dm. 
MO 

Hence, from (18) and (20) (m I: 2n) 

(21) 2’ q,(m) < c,dW. 
Thus from (16) and (21), if 6 is sufficiently small, 

(22) A-~C’A,(m)>~8~Bn4. 

From (22) we obtain that there exists an m,, n -Irn,S 2n, - dmo), 1 
m0 -3-z 

for which 

(23) A,(m,) > 9 d2m. 

Now we show that m, satisfies the conditions of Theorem 1. In 
other words we shah show that 

(24) Ptmo, Ortl +cdsp(mo) low0 
does not hold for c,y(m,) values of 1, where c, and c, are suitable 
constants (ca = c,(q)). 

We shall prove that (24) is true for c,=c,= @‘. Put 
z= (1 f@) cp(m,) logm,. 

We have from the prime number theorem 

(25) ~-49 < t I+ 2d20) &mJ. 
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Thus to prove our assertion it will clearly-suffice to show that there 
are at least 3d’“~(m,) progressions m,-dfl each of which contain more 
than one prime not exceeding z (i. e. it imm’ediately follows from (25) 
that there are at least P*rp(m,) progressions mod+ 1 for which P(m*, l) > x). 

We have by the definition of m,,~(m,)~4~m,. Thus yla, 
Hence by (23) 

WI A,(m,>~~2n. 

Next we prove 

(27) L=qy+c2+ 

Suppose that (27) is already proved. Then we prove Theorem 1 as 
follows: We have by (6) and (26) 

cw ~B,tm,,OtB,(mo,~)-~)=A,(m,)~~~e~. 

Thus if there would be less than 3Gaosp(m,) values of I with B,(m;,~) > 1 
(in fact with &I,@,, /)k 4), we would obtain from (28) by a simple 
calculation, using Schwarz’s inequality as in (8) and using q(mJ > 
>46rn"~446n, 

which for sufficiently small 6 contradicts (27) and thus completes the 
proof of Theorem 1. 

Now we only have to prove (27), Denote by F,(r;, r,, f3) the 
nuniber of primes pi so that 

Pi+rlmo, Pi+r2ma, Pi+rvmO 

are all primes not exceeding 2% Clearly 

(30) 
Further 

(31) CVJ., r221 r3) 5 mh, r2, f-3) 
where F,‘(r,, r,, t;) denotes the number of primes p,l;z so that 

Pii-r,mo, wf-m, Pifrdh 

are also primes. We obtain by Brun’s method?) that 

7) P. lkb68, On the easier Waring problem for powers of primes, Proceeditqgs 
Cambridge.Phiiosophicui Satiety, 33 (1937), p. 6-12, lemma 2, p. 8. 
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Hence -by the definition of z ahd m, (g(+%) 

(331 

where in nI, p runs through the divisors of rIrSr3(rS---r,) (G-TX) (r3- Tz). 
From (33) we evidently have 

Now by a simple argument we obtain from Iemma 1. of my paper 
‘Qn the easier Waring’s problem for powers of primes”s) that 

Thus finally from (33) (34) and (35) we obtain (27) which completes 
the proof of Theorem 1. 

Our proof of -Theorem 1 very strongly used the special properties 
of the primes. Perhaps the following question would be of some inter- 
est: Let ql, q2, . . . be a sequence of integers so that the number of 

q’s, qot exceeding R, .equaIs 
i+($J- 

Let (k, 1) = 1 and 

P(k, 1) denote the least q in the arithmetic progression kx+ 1. Is it true 
that there exists an infinite sequence of integers k, 40 that 

W, U < (1 -EC,) vOWq$i 
does not hold for c,y(kij values of I? Perhaps some assumption like 
(ql, q,) = 1 might be necessary. 

P r o of of Theorem 3. It follaws from the result of SCHNIRELMANN 6) 
that the number of solutions of 

P m+l-Pm~G, PInin 

is less than cn (lo~~jB . Thus since n(n)+ c,, & , we immediately 

obtain Theorem 3. 

(Recevied January 1.2, 1949.) 


