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1. Introduction. Though much effort has been expended in studying the 
mean values of arithmetic functions there is one case which has not yielded a 
great deal either to elementary or analytic methods. The case to which we 
refer is that of estimating 

(1.1) Nx) = nq*4b& 
\ 

where 4(n) is the Euler function (i.e. rb(~) = the number of integers less than 
n which are relatively prime to n). If we define the error function R(x) via 

(1.2) 
3 

R(x) = @T(x) - f x2, 

the question reduces to studying the behaviour of R(X). The first result is 
due to Dirichlet [l], who proved that 

(I-3) R(x) = Q(xb) 

for some 6, 1 < 6 < 2. This was improved by Mertens [2] to 

(l-4) R(x) = 0(x log x), 

The proofs in both cases are very short and simple and may be found in various 
textbooks [l], [3]. It is therefore of particular interest that to date there has 
been no improvement in the estimate for R(x) beyond (1.4). 

In a different direction Pillai and Chowla [4] have proved that 

(1.5) 
and 

R(x) # 0(x log log log x), 

(1.6) n~zw - & x2. 
\ 

Sylvester, [5], [6], conjectured among other things that for all integers 
x > 0, R(X) > 0. This was disproved by M. L. N. Sarma [7], by the simple 
expedient of showing that R(820) < 0. 

In this paper we propose to prove that R(x) changes sign for infinitely many 
integers x. More precisely, there exists a positive constant c and infinitely 
many integers x such that 

(1.7) R(x) > c x log log log log x, 

and infinitely many integers x such that 
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0 *s> R(x) < - t x log log log log X. 

2. The evaluation of certain sums. The proofs of the results mentioned 
in the introduction are obtained by first treating the error function 

The relationship between H(X) and R(x) is given by 

LEMMA 2.1. For integral x, 

(2.1) c H(n) = ;x f (x + 1) H(x) - R(x). w<x 
Proof. 

= ;2x + (x + 1) H(x) - R(x). 

We will need estimates for certain sums which we now provide. 

LEMMA 2.2. 

(2.2) 

(2.3) 

(2.4) 

Proof. (2.3) follows 
Next we consider (2.2): 

immediately from the fact that H(x) = O(log x). 
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which yields (2.2). Similarly, 

whence (2.4) follows. 

THEOREM 2.1. 

(2.5) c H(n) = $ x log x + O(x). 
mrr<z 

Proof From Lemma 2.1 we obtain for all x > 0 that 

(2.6) gq”’ = c2 x + x J-f(x) - WC) + 0(&T x). 
\ 

Replacing x by x/m in (2.5) and summing over all integral M < x we have 

Then, taking into account the estimates of Lemma 2.2 we obtain (2.5). 
Actually, Pillai and Chowla [4] have proved that 

P-7) c H(n) - ; x7 
n<r 

and we could use (2.7) instead of (2.5) in our development. However, the 
proof of (2.7) requires the prime number theorem, and we therefore introduce 
(2.5) for the sake of simplicity. 

3. The average of H(n) over arithmetic progressions. The main part of 
our proof consists of evaluating certain averages of H(n) over arithmetic 
progressions. We begin with 

LEMMA 3.1. 

(3.1) 

where 

Proof 

1 

m =,¶(A) 

c =C(A)= rI St.4 

c dm) - 

m<z m 
m-B(A) 
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THEOREM 3.1. For A, B arty integers such that A > B > 0 

(3.2) C H(dn - B) = ; ,&H(n) + AX + O(log x> 
n<r \ 

where 

A = A(d, B) = M(A, B) - 3/d, 

i 

f B _ ; dUjW) - C(d)I<$$$ for B # 0; 
,c 

(3.3) IMcA’ B, = 1 &4)C(d) 

t? A 
for B = 0. 

Proof. It clearly suffices to prove (3.2) for x integral, and so we assume x 
an integer. We have 

(3.4) 

- ; (dx2+ Ax - 2Bx). 

Considering the first sum of (3.4) we have 
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B-l 
+A -c 4(m) I ‘2 (a;B) c $hJ 

(3.5) 
n<Ar-B @Z a=0 &Ax-B m 

n+B =a(A) 

+ 3 [(Ax-W+ (Ax-WI 

=; .<g B H(n)+;Ax++ 'i'y c 4(m) - + U(log 3t). \ - a=0 m<Au--B m 
m+B=a(A) 

Next, using Lemma 3.1, we note that 

On the other hand, 

P(d) A-B-1 

;g;(a-B) C d = C c C '$) 
dlh, a--B) c=-B dl(A. cl 

A-B-l /,\ A -1 , +. 

A -1 =-j-c c &2-A “g 
c=o dl(A.6) d 

C”(d) 

c =A -B dj(A, c) d 
A -1 

=cc c 
cl(d) A f c @ . 

t =o dl(A. c) d c=l dl(A,c) d 

For each term of (3.7) we have in turn 

‘E 20 (d) 

= ;Azdg$ - ;q!s(A); 

and 

(3.9) $ c cc(d) = ; rb(Ad 

G=I dl(A,c) d do ’ 

where this last sum is 0 if B = 0. 

Combining (3.6), (3.7), (3.8), and (3.9) we get 

(3.10) yJcj2) ,,g-Bt?!$ = x {y g y - f d(Af(A) 

m +‘B la(A) 

B dC-4,~) 
- C(A) CT1 (A,c) 
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Finally, inserting this in (3.5), noting that C(d) dG 9 = $, and combining 

with (3.4) and Lemma 3.1 we obtain 

C H(drt--B) = d C 
VZ<A+ fl<AX 

H(N) + $ Ax2 - $x 

+ 3-dx _ X (b(d)C(d) _ 

CT2 ii A 
C(djx g b(d,c) 

C=I (d,c) 
(3.11) 

+ C(d)xU 3) 
(A 3) 

- $ [dx2+dx-2Bx]+O(log x) 

= ; ,xI,H(n) + Ax + O(log x>. \ 
THEOREM 3.2. For 8, B any integers, A > B > 0, 

(3.12) C H(dn - B) = M(A,B) x log x + O(x). 
mn<x 

Proof. Replacing x by x/m in (3.2) and summing over all integers m 6 x, 
we have 

C H(dn-B) = d C C H(n) + Axlogx + O(x). 
mn<x m(x n< A+ 

Since 

c C 
x<m(Ax n<Arlm 

H(n) = 0 (,$.,1, > = O(x), 
\ 

we get 

(3.13) C 
mnQx 

Wdn-B) = ; %gAr H(n) + A x log x c O(x), 
. 

so that via (2.5) this reduces to (3.12). 
We note in passing that if we combine (3.2) with the deeper result (2.7) 

we have 

THEOREM 3.3. For A, B any integers, A > B > 0, 

(3.14) C H(dn - B) - M(d, B)x. 
nQz 

4. On the changes of sign of H(x). Merely to show that H(x) changes 
sign infinitely often is easily deduced from (3.12). We note first that if 

A = A, = i pi, and K is sufficiently large 
i=l 

B-lW,c) 
,Fl (A = 

B$ (c) = !t (B - 1) + H(B - 1) 
QT2 

. 
c=l c 
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Thus we obtain easily for B # 0, and fixed, that 

1 
lim lim - 
u-m2 x-02 xlogx 

C H(d,n - B) = f$ - H(B - 1). 
m?z<r 

Since 

6 ;2 - H(B - 1) = !?! - H(B), 

this may be written as 

(4.1) 
1 

lim lim - C 
K-co x-03 x log x mn<r 

H(d g.z - B) = ‘+ - H(B). 

From (2.5) it follows that H(n) is positive for infinitely many n, and we 
need only show that we cannot have H(n) > 0 for all sufficiently large n. 
For if this were so, for.all sufficiently large B 

1 
lim lim - C HL4.n - B) > 0, 
I--w r-rm xlogx mn<‘r 

so that we would have 

‘9 >, H(B) 2 0. 

For e > 0, small, choosing a large odd number B such that - 
B 

< e, we see 

that 

H(B + 1) = H(B) - : + ‘(BB;;) 6 e - f + f < o, 

which would provide a contradiction. 
The above argument can be improved upon if we use the analogue of (1.5) 

for H(x) in conjunction with (4.1). This analogue, also proved by Pillai and 
Chowla, asserts that 

(4.2) H(x) # o(log log log x). 

Thus their exist infinitely many integral x such that 

(4.3) ( H(x) 1 > c log log log x, 

where k is some positive constant. From (4.3) we note that given any large 
number N 2 6 we can find an integer B such that /H(B)1 > N. We then 
examine two cases: 

Case 1. H(B) > IV. 

In this case we obtain from (4.1) that; 
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1 
Km Km - c H(A,n - B) < - Jv+ 1; 

I’W z-w xlogx nan<r 

and for all sufficiently large K, say K > ko, wTe have 

1 
lim - C H(A,n-B) < -N+2. 

r-m xlogx mn<z 

Then for each such K there exists an x0 = x0(K) such that, for all x 2 XO, 

(4.4) C H(A,n - B) < (- Nf3)xlogx; 
mn<x 

from (4.4) we see that for each k > ko we obtain an n* = n*(k) such that 

H&n*--B) < -N+3 < -;N. 

Case 2. H(B) < - N, 

In this case we proceed exactly as in Case (l), obtaining from (4.1) that 

lim lim -L C H(A,n - B) > N. 
K-+W x+w xlogx mn<x 

This in turn yields a ko such that for each k > k. there is an n* = n*(k) such 
that 

H(A,n* - B) 3 +N. 

From the above we see that H(x) assumes arbitrarily large positive and 
negative values. We may restate this and its implication for R(x) as follows. 

THEOREM 4.1. For integral x, we have 

(4.5) lim H(x) = m and lim H(x) = - a, - 

(4.6) 
I’m R(x) WI 

1 - cc0 and lim--=-a. 
x - x 

Proof. (4.5) is clear from the above remarks. From (2.1) and (2.7) (or 
the weaker estimate ,gz H(n) = O(x)), we obtain 

\ 

(4.7) R(x) = x H(x) + O(x), 

and (4.6) then follows from (4.5). 

5. More precise results. By refining some of our estimates the arguments 
used above may be made to yield the still more precise result that for some 
c > 0, there exist infinitely many integers x such that 

(5.1) H(x) 9 c log log Iog log X, 

and infinitely many such that 

(5.2) H(x) < - c log log log log X. 
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We shall now give a sketch of the proof of this. 
We need to obtain the dependence of many of the estimates obtained above 

on the modulus A. To begin with, a glance at the proof of Lemma 3.1 yields 

Using (5.3) instead of (3.1) in the proof of Theorem 3.1 we obtain for integral x, 

(5.4) C H(An - B) = $ C A(n) + Ax + O(TtA’ log Ax), 
R<Z n<Ax 

where v(A) = the number of distinct prime factors of A. 
Combining (5.4) and (2.7) gives 

(5.5) C H(An - B) = M(A,B)x + 0(2”‘A’ log Ax) + o(x), 
a<x 

where both the 0 and o are uniform in A. Then taking x = A = II p and 

noting that then 1 - $ < C(A) < 1 - 2 (cl > 0, c2 > 0), we obta?Tfor all 

sufficiently large B) that there is a constant I, independent of both A and B, 
such that 

(5.6) 1; s;A H(An - B) + H(B)1 6 1. 
\ 

The desired result now follows from (5.6). We know that for infinitely 
many B, 

IH(B)I > c log log log B. 

There are then, two cases: 

Case (a). H(B) > K log log log B. 

In this case (5.6) implies that there exists an n* < A such that 

H(An* -B) < Z-clogloglogB 

6 - +c log log log B 

< - CI log log log log (An* - B), 
for large B, since for A = II it), log A - B. 

P<B 

Case (b): H(B) < - clog log log B. 

Then as in Case (a), (5.6) implies that there exists an n* 6 A such that 

H(An’ - B) > c log log log B - 1 
3 SC log log log B 
> cl log log log log (An* - B). 
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Thus we see that there exist infinitely many integers x such that each of the 
inequalities (5.1), (5.2) hold. Combining this information with (4.7) we obtain 
the analogous result for the inequalities (l&7) and (1.8). 

Uniaersity of Aberdeen 
and 
New York UnGersity 

Editor’s Note: References for this paper were not available at time of going 
to press. They will appear in the following number of the Journal. 
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