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The distribution of quadratic and higher residues, 

By H. DAVENPORT and P. ERD~S in London. 

In this paper we discuss some of the many problems that can be 
propounded concerning the distribution of the quadratic residues and non- 
residues, or more generally the kth power residues and non-residues, to a 
large prime modulus p. If k > 2, we shall always suppose BG 1 (mod k) ; as 
is well known, this involves no loss of generality. 

One of the simplest questions that presents itself is that of the order 
of magnitude of the least quadratic non-residue d to a large prime modulus p. 
It was proved by VINOGRADOV~) in 1919 that 

(1) d = O(pa log’ p), where 
1 

FL = __. 
2E 

VINOGRADOV based his proof on an inequality discovered by him “), which is 
substantially equivalent to P~)LYA’S inequality 3, that 

t- 1 

for any proper Dirichlet character x(n) to modulus m > 1, and any positive 
integer x, For the-proof of (1) one needs, of course, only the case of P~LYA’s 

inequality when m is a prime p and x(n) is the Legendre symbol 

In 5 2 we prove that 
1 

d=O((p”logp)@), where @=L. 
c 

This result is better than (1) only in the exponent of the logarithm, which is 
unimportant. But the proof is of some interest, in that an elementary identity 

1) See Trans. Amer. Mafh. Sot., 29 (1927), 209-217 and 218-226. The second of 
these papers gives a reference to the original publication in 1919. 

3) See the firsI of the papers in 1). 
3) Nachrichfen K. Ges. Wiss. Gdffingen, Math. -- phys. Klasse, 1918, 21-29. 
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I(4) below] is used in place of PcjLYA’s or VINOOR~~V’S inequality. It may 
be recalled that the proof of P~LYA’S inequality, though not very difficult, 
depends on the use of Gaussian sums; and VINOGRADOV’S proof of his own 
inequality, though elementary, is not altogether simple 

In 5 3 we give estimates for &, the least kth power non-residue (mod@, 
when k is fixed and p is arbitrarily large. For k= 3, the result is the same 
as VINOGRADOV’S “), but for larger values of k we obtain more precise estimates 
than his by making use of recent work of DE BRUIJN and others “) on the 
number of numbers up to x which are divisible by at least one prime greater 
than y. 

Another problem that arises when k > 2 is the order of magnitude of 
the least kth power non-residue in any given one of the k-l classes of non- 
residues. In 5 4 we give an estimate when k= 3, and in $ 5 we prove that 

1 
- -,j 

an estimate of the form O(p2 ), where ‘5 ===,q(k) > 0, is valid for any k. 
The value of q is very small, but it is difficult to see how one can obtain 
a reasonably good result without making some assumption about the arithmetical 
nature of k. 

Finally, in § 6 we add some general remarks about the distribution of 
the quadratic residues and non-residues in sets of consecutive integers. We 
draw attention to the problem of estimating the maximum number, say H, of 
consecutive quadratic residues or non-residues. All we are able to prove is 

that H = O(p+) 

Lemma 1. Let x(n) be a non-principal character tu the prime modulus 
p, and Let h be an integer with 0 < h c p. Then 

where the outer sum is over a complete set of residues (modp). 

Proof. The sum on the left of (4) is 

where the bar denotes the complex conjugate. Since [x(x + n) 12 is 0 if x Jr n EE 0 
(mod p) and 1 if x+ n z/z 0 (mod p), the value of the first double sum is 

4) See the second paper referred tb in 1). 
9 Proc. K. Akod. Wet. Amsterdam, A, 49 (IQ%), 50-&l See the references given 

there to work by BUCHSTAB, CHOWLA and VIJAYARAGHAVAN, and RAMASWAMI. 
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(p- 1)h. We shall prove that “) 

(5) i&(x+ n1)jf@+nd =-I 0 
for n, +n, (mod p). This will imply that the value of the triple sum above 
is -!@-I), whence the result. 

To prove (5), it suffices to observe that the congruence 
X+lZ,=y(X+n,) (mod PI 

establishes a. one-to-one correspondence between all x with x + - na and all 
y with y+ 1. Hence the sum in (5) is 

2x(y)=-x(1)=-1. 
YSl 

Theorem 1. Let d be the least positive qundrutic non-residue to the 
prime modulus p. Then d satisfies (3). 

Proof. We take h = [pi log p] in (4) and use only the terms x = 1, . . ., h 
in the sum. We have 

it(y) = h-2N{x, x+ h), 

where N(x, x + h) denotes the number of quadratic non-residues m satisfying 
x+lsmsx+h. 

Since d is the least quadratic non-residue, every quadratic non-residue 
must be divisible by at least one prime 2.d. Hence 

where 4 runs through primes. By well known results in the elementary theory 
of primes, the last sum is 

< h(log log 2h --loglogd)+~d, 

where c, is a constant. Hence 

&r+).h /1--210glog2h+210glogd-$d/ 

for x=l,...,h. 
Applying (4), we obtain 1 

2c, p+ 2 
l-2 log log 2h +2 log iog d- - Iogd ?Fi@$’ 

6) The relation (5) occurs in JACOBSTHAL'S doctoral dissertation (Berlin, 1906), but may 
well have been known to GAUSS. 
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[It should be noted that if the expression on the left is negative the argument 
does not apply, but then the result is obviously valid.] We therefore have 

log ___- wy c., - 
logd 2 logd’ 

-- 
logd<e 1 log2h+c, 

The conclusion (3) now follows. 

Lemma 2. Let q(x, x;) denote the number of positive integers not 
.l 

exceeding x which have at least one pt-ime factor 1x;, where u 2 1 is fixed. 
Then 

(6) lim x--r+(x, xi) = 1 -p(U), 
z*ct 

where p(u) is the continuous positive and decreasing function defined by 

(7) I 
p(u) = 1 -log ll for lSffS2, 

22$(U)=-Q(U-1) for ugz. 

Moreover 

(8) a(u)=exp(-Ulogu-~loglog~+Q(u)) 
for large u. 

For proofs see the paper referred to in “) and other papers cited in it. 

Theorem 2. Let d, be the least positive kth power non-residue (mod p), 
where k > 2 is fixed, and p is a large prime z 1 (mod k). Then 

(9) dr, = 0 (pmkfB) 

for any fixed B > 0, where ulC = (24-l at.?d ulC is the (unique) solution of 

Q(U)= +. 

Proof. For simplicity we base the proof (which is essentially VINOGRADOV’S) 
on P~)LYA’s inequality (2) rather than on the identity (4), though this would 
also be possible. Let x(n) be a primitive character (mod p) of order k. Then 

xOO+xV+l-- -l-x”-‘W 
has the value k- 1 if n is a kth power residue and -1 if n is a kth power 
non-residue. Thus, for any positive integer x9 

2 (x(n) + - . - +x”-‘(n)) = (k- 1)x-kN(x), 
?Sll 
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where N(x) is the number of kth power non-residues among 1,2,. . . , x. It 
follows from POLYA’S inequality that 

N(x)= 1-i 
( 1 

x$O(p~logp). 

Any kth power non-residue is divisible by at least one prime Z&. 
Hence 

N(x) 5 w% d’s), 
1 

in the notation of Lemma 2. Taking x = [pY log”p], for example, we reach 
1 

a contradiction if there are arbitrarily large primes p for which dk > xc, where 

D is any fixed number for which Q(C) > + ; for then x-l $6(x, dk) would be 

less than 1-i by a fixed amount for such primes. This leads to the result 

stated. 

Corollary, The values of the exponent m. for k= 3,4,5 are 

Q --L,-$-l-J2567 3 
2 - - **-I 

ct,=O.235.. ., 
cc, =,0.221 . . . . 

Moreover for large (but fixed) k, we have 
1 logfogk c, 

-a < 7 log k + log k 
where cG is a constant. 

Proof. The value for rt,, and hence for ccp, follows from the first part of 
the definition of g(u) in (7). For II, and ZI,, we observe that, for 2 s US 3, 

11-l 

(10) Q(U) = 1 -log U-j- 
s 

log f 
mar. 

1 

On calculating the integral numerically, one is Ied to the values uI = 2.124. . . , 
u,=2.257.. ., whence the values stated for q, q, The inequality for CCI; 
when k is large follows at once from (8). 

§ 4. 

Theorem 3. Let y = & =0.383 approximately, where u denotes the 

.wlution of 
216-l 

(11) loguf s 
+@df=$ 

1 
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Then each class of cubic non-residues (mod p) contains a positive integer less 
than py+= for any fixed positive I, provided p is sufliciently large. 

Proof. Let d denote the least cubic non-residue (modp). Let 7(n) be a 
character to the modulus p of order 3, and let x(d)=C, so that 5 *is one of 
the two complex cube roots of 1. Let f be the least positive integer for which 
x(n= C2. Our object is to estimate f. Plainly 

(121 fsd’. 

This in itself is useless as an estimate for f, but will be needed later. 

Let x = [pi iog”p]. It follows from P~LYA’S inequality that the number 
N,(x) of positive integers n S x for which x(n) = 5” satisfies 

(13) N~(x)=~x+o(p~logp). 

Any such number n must either have a prime factor zf or have two prime 
factors each 2 d. Hence 

where q and q’ run through primes. We can replace 

double summation by f+, in virtue of (12). 

d in the limits of the 

We can suppose that f+ > x:, 
++c 

since otherwise f <p3 and the desired 
result holds. Under these circumstances we have the identity 

For the first sum counts how many multiples 5 x there are of primes 2 f+> 
and the second counts how many multiples 5x there are of two distinct 

primes each 2 f;. The latter are counted twice in the first sum. Hence we 
obtain the number of numbers sx which have at least one prime factor 

gcf+, which is 17j(x,f;). 
1 

Adding (14), with d replaced by f ‘, to (15), we obtain 

the term o(x) being an allowance for the fact that the double sum in (14) 
has q 5 q’ whereas that in (15) has q < q’* 

D Ii 
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Using (13) and approximating to the sums in the usual way, we obtain 

f < log 
2logx 

~+1og ~ 
logf 

-x-‘ip(x, p:, + o(l). 
1 

If f =xT, this gives 

by Lemma 2. Since 2 < 2~ < 3, it follows from (10) that 
Yr-1 

logv+log2v-1 +Q(zl;)=log?;+ 
s 

+$dt. 
1 

This leads to the result stated. 

Throughout this section k will be a fixed positive integer greater than 2. 

Theorem 4. There exists Q positive number ?I2 depending only on k, 
with the following property : for every sufficiently large prime p z 1 (mod k), 
each of the k- 1 clusses of kth power non-residues (mod p) contains a positive 

1 
integer less than pT’- ri. 

Proof. We define positive numbers d, > 6, > . . ., depending only on k, 
as follows : 

06) 
1 

cF’=k+l 7 

Let ,v denote the total number of prime factors of k (multiple prime factors 
counted according to their multiplicity). Let 

(17) 

Let 

W 

I 

x =pT log’ p. 

We shall prove that, for sufficiently large p, each class of kth power non- 
residues contains a positive integer less than XI-~. This implies the result, on 

taking .q to be any fixed number less than $8. 

Let Pg=xas for s=l,2,,..,.~+1, so that Pl>P2>.‘.. The primes 
z P, belong to certain classes of kth power residues and non-residues, and 
these classes generate a subgroup & of the group 8 formed by all, the k 
classes. Plainly 

&*1 c gjv c* - - c-f& c o.- 
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Since the order of a subgroup is a factor of the order of the group, the 
group 63 cannot have a chain of distinct subgroups, each contained in the next, 
which comprises more than 2’ subgroups in addition to 8 itself. Hence either 
$I = ($3 or &+I = $, for some s with 1 5’s 5 Y. 

Let A be any particular class of kth power non-residues (mod&. We 
shall assume that every number belonging to the class A is ~xr-~, and shah 
deduce a contradiction. 

If the class A is contained in the subgroup &, the argument is very 
simpk. The subgroup $3, is generated by the classes of the primes ( &, and 
so the class A is representable as 

where Cl,..-, C, are fhe classes of various primes 5P,, and m,, . . . , m, are 
positive integers We can suppose that m, f.. . +ml-S k. Far otherwise the 
classes 

C,“l (15ff,zmI), C?C2 (lz&smm,) ,..., W-..CX’C? (lStf,sm,.) 

could not all be distinct, and on dividing two such identical classes we 
would have a representation of the unit class with non-negative exponents 
not exceeding m, , . . . , m,. respectively. This would lead to a representation of A 
with smaller exponents, and eventually to a representation with m1 $ . . . + m, 5 k. 
Such a representation implies that there is a positive integer in the class A 
which is 

s PI 9n1+. . flllr s p:; = XIGal = *l-d, < p 
2 

and this is contrary to the hypothesis. 
We can now suppose that the class A is not contained in the subgroup 

sjI. This implies in particular that sj, + a, and consequently that 

@s+l = 6s 

fur some value of s. This value of s will be fixed throughout the subsequent 
argument. 

We can factorize each number m in the class A into primes as follows: 

m=q~q~...r~r$...=qr, say, 

where ql,... are primes which do not belong to classes in the subgroup 
&(= $i,l), and r,, . . . are primes which do belong to classes in that sub- 
group. Plaimy 

(19) qiZf?s- 

Moreover, 

(20~ q 2 xl 4-k 4.+7. 

For since P belongs to a class in the subgroup .&+I, we can find, by the 
argument used above, a number r’ in the same class as r and satisfying 
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r’ s (P*+$ = xkila+l. If q did not satisfy (20), the number qr would be in the 
class A and would be less than x1-*, contrary to the hypothesis. 

By P~LYA’S inequality and the definition of x in (18), the number of 
numbers m in the class A satisfying m sx is 

On the other hand, each such number m is divisible by some number q which 
satisfies (20) and whose prime factors all satisfy (19). Hence the number of 
numbers m sx in the class A does not exceed 

where q runs through numbers of the above kind. It follows, writing 
,, = x1 ki dd+l , that 

where every prime factor of q satisfies (19), and where c,; is a constant. 
To estimate the sum on the left of (21) we use the following device, 

which has the advantage of simplicity, though the result it gives is no doubt 
crude. We express each q as qlf, where q1 is a prime 2 I?, and f is either 
1 or is composed entirely of primes 2 R. Then 

(22) 

where ql is restricted to primes and 5 is either 1 or is composed of primes 
2 Ps. 

The prime q1 is restricted -to an interval PTS q1 s Q, where PZ P, and 
Q x 
+7 

Hence, by the well known estimate for a sum of reciprocals of 

primes, we have 

iY;< Iog@++&J 
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As regards z+, we have obviously 

where 6 runs through primes. 
On substituting these estimates in (21) and (22) we obtain 

s+ k&+r 1 c,. 
w>* “k- logp ’ 

where c, is a constant. By (16) this implies 

In view of (17), we now have a contradiction if p is sufficiently large: This 
proves Theorem 4. 

§ 6. 

It is natural to consider the possibility of generalizing the identity of 
Lemma 1 so as to obtain an asymptotic formula for the corresponding sum 
with the exponent 2 replaced by any positive integer. The result is given in 
the following lemma. It does not seem to throw any light on the problem 
of the magnitude of the least quadratic non-residue, but it enables us, to 
prove (in Theorem 5 below) that the distribution of the sum 

(23) 

for large p is normal (or Gaussian) provided h is taken to be a function of 
p satisfying appropriate conditions. 

Lemma 3. Let p be an arbitrarily large prime and let A be any integer 
satisfying 0 < h < p. Let r be a fixed positive inieger. Then 

~(&(x)+=1,3...(2 r-l)(p-$r)(h--~r)‘+O(h2’pa~), 
.i 

where cc? depends only on r and CL? < 1, and where OS 0 s 1, 0 5 6’~ 1. Also 

Proof. Consider first the case of the exponent 2r. We have 

The sets of integers n,, . . ., n?r can be divided into two types. If the 
set comprises at most r distinct integers, each of which occurs an even number 
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of times, we say that it is of the first type. In this case, the polynomial 
(x+ n,). . .(x+ n,,) is a perfect square, and the value of the sum extended 
over x lies between p- r and p. Hence the contribution of the sets of integers 
n1, ---, n,,. of the first type is 

w-, h) (P-W, 
where F(r, h) is the number of such sets and OS 6 S 1. 

Now consider the remaining sets of integers n,, . . ‘, n,,.. For these, the 
polynomial (x+ n,). . .(x+ n,,) is not congruent (mod p) to the square of 
another polynomial, since it has a zero of odd multiplicity. Under these 
circumstances it is known i, that 

where CC,. depends only on r and CC,. -K 1. Hence the contribution of sets of 
the second type is O(hzrp:+.). 

It remains only to estimate the number, say F(r, h), of sets of integers 
n,, . . . , n,,., with 1 5 n/Sh, which comprise at most r distinct integers each 
of which occurs an even number of times, The number of ways. of choosing 
exactfy r distinct integers from 1,2, . . ., h is h(h-1). . .(/z----r+ l), and the 
number of different ways of arranging these as r pairs is (2r- 1) (2r-3). , . 
5.3.1. Hence 

F(p;h)~l.3...(2r-l)h(k-l)...(/z-r+l)). 

On the other hand, the number of ways of choosing at most r distinct integers 
from 1,2,..., h is z/zh”, and, when these have been chosen, the number of 
different ways of arranging them in 2r places (each occurring an even number 
of times) is at most (2r-1)(2r-3). . .5.3.I. Hence 

F(r, h) 5 1.3 . . . (2r- l)h”. 
Thus 

F(r,h)=1.3...(2~=--1)(/z-B’r)“, 

and the result follows. 

The result for the sum with an odd exponent is now obvious, since 
in this case there are no sets of the first type. 

Theorem 5. Let h be any function of p satisfying 

h -60 lwh ----0 as p-+m. 
’ 1WP 

7) By a theorem of DAVENPDRT [Acta M&z., 71 (1939), 99-121; see formula (13)j the 
result holds with c(~= (4r + 3)/(4r+6). A much deeper theorem of A. WEIL would allow 

one to take a,, = r. 
2 
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Let J&(x) be defined by (23) for primes p. Let M,(l) denote the number of 
integers x with 0 sx <p for which 

Then 

for each fixed A. 

Proof. We observe first that in view of the conditions imposed on h in 
(24), it follows from Lemma 3 that 

for each fixed positive integer I-, where 

pr= 1 
1.3*..(2r- 1) if r is even, 

I 0 if r is odd. 

Let N,(S) denote the number of integers x with OSX <p for which 
&(x)ziis, Then N,(s) is a non-decreasing function of s which is constant 
except for discontinuities at certain integral values of s. Also N,(s) =0 if 
s < -h and N,,(S) ===p if s 2 h. Obviously 

h&(A) =N&h+). 

Collecting together the values of x in (25) for which &(x) = S, we 
obtain 

(26) 

Define @& by 

(27) c&,(t) = $Np@hj = +V,(f). 

Then, by the definition of the STIELTJES integral, the left hand side of (26) is 
-a 
J’f’.d@&). 
Pa 

Putting 
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we have 3: co 
s 

-‘p t’-dP(t)-&mm t“e 2 tit=+ s --z 
Hence 

(281 If f’d cZ$,(t)--t jt f’d@(t) as p-+00, 
% --I! 

for any fixed positive integer P. The assertion of the theorem is equivalent, 
by (27), to the assertion that 

(29) CBJ,(i)-+ CD(i) as p-+m 

for each real number A. 
The fact that (28) implies (29), when c&(t) is the special function 

defiried above, is well known in the mathematical theory of probability. We 
outline one method of proof. If (29) is false for a particular ,I, we can suppose 
without loss of generality that there exists d’ > 0 such that 

W @&)z @@)+a 

for infinitely many p, There exists “) a subsequence, say q, of these p such 

that CD,&) converges to a non-decreasing function w(f) at every point of 
continuity of this function, and 

= lim ~t’d@,(t)=~t’d@(t). 
*-em -;9 -m 

Also D*(t)+0 as t----m and P(t)-+1 as r-t+-. It now follows 
from the well known uniqueness of this special moment problem that 
w(i)= Q(t) for a11 t. This contradicts (30), and the contradiction establishes 
the desired result. 

An interesting problem is that of the order of magnitude of the maximum 
number of consecutive quadratic residues, or of consecutive quadratic non- 
residues, to a large prime modulus p: Denoting these maximum numbers by 
Jf+ and H-, it follows from Lemma 1 that 

(31) H+ = O(p$, H- = O(p$ 

For if the numbers x+1,x+2,..., x +H all have the same character, then 
the sum 

*) See the two theorems of HELLY in the introduction to J. A. SHOHAT and J. D. TAMARKIN, 

The probiem of moments (Math. Suryeys No. 1, New York 1943). 
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where h = ski , has the value h or ---/I for at least h consecutive values 
i 1 

of x, and the lemma implies h3~pk--h2, whence the result. We have not 
been able to improve on the estimates (3l). 

As regards results in the opposite direction, it can be shown “) that 
there are infinitely many primes p for which 

I&. > cg(log p)f 
and similarly with H-, where c, is a positive constant, By using the result 
of A. WEIL it is possible to improve this lower bound to ca logp. 

Note added January 1953. We observe that the identity of Lemma 1 is 
given in VINOGRADOV’S Osnovy teorii Eisel, p, 109. 

9) See Q 9 of the paper referred to in ). 
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