
CHANGES OF SIGN OF SUMS OF RANDOM VARIABLES 

P. ERD~S AND C. A. HUNT 

1. Introduction. Let x1, xz9 9. l be independent random variables all having 

the same continuous symmetric distribution, and let 

Sk = xl - t - * *  l f  Xk. 

Our purpose is to prove statements concerning the changes of sign in the se- 

quence of partial sums st, ~2, l l l which do not depend on the particular distri- 

bution the xk may have. 

‘Ihe first theorem estimates the expectation of Nn, the number of changes 

of sign in the finite sequence s r, s l . , sn+t. Here and later we write + (k ) for 

THEOREM 1. 

It is known (see [ 11) that, with probability one, 

N, 
lim sup 1 

n-m (n log logn)“2 = 

when the xk are the Rademacher functions. Fe conjecture, hut have not been 

able to prove, that (11 remains true, provided the equality sign be changed to 

S¶ for all sequences of identically distributed independent symmetric random 

variables. We have had more success with lower limits: 

THEOREM 2. With probability one, 
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1% 1 
lim inf -> -. 

i-L+-= logn - 2 

By considering certain subsequences of the partial sums we obtain an exact 

limit theorem which is still independent of the distribution of the xk: Let C( be 

a positive number and a the first integer such that (1 + u)” 2 2; let l’, 2: l -9 

be any sequence of natural numbers satisfying (k + 1)’ 2 (1 + ~)k’; and let 

Ni be the number of changes of sign in the sequence s:, . l . , s;+~, where S; 

stands for sk#. 

THEOREM 3. E { N,‘] 2 [da1/8, and, with probability one, 

N,’ 
- = 1. ,!?w EjN;) 

For k’= 2k,, it is easy to see that E 1 Ni { = n/4; so with probability one the 

number of changes of sign in the first n terms of the sequence st, s2, . . . , 

s2 k , . l l is asymptotic to n/4. 

The basis of our proofs is the combinational Lemma 2 of the next section. 

When translated into the language of probability, this gives an immediate proof 

of Theorem 1. Re prove Theorem 3 in 6 3 and then use it to prove Theorem 2. 

A sequence of random variables for which N,/log n + l/2 is exhibited in $4; 

thus the statement of Theorem 2 is in a way the best possible. Finally we 

sketch the proof of the following theorem, which was discovered by Paul L&y 

[Z] when the xk are the Rademacher functions. 

THEOREM 4. With probability one, 

o(logn). 

Our results are stated only for random variables with continuous distri- 

butions. Lemma 3, slightly altered to take into account cases of equality, re- 

mains true however for discontinuous distributions; the altered version is strong 

enough to prove thi? last three theorems as they stand and tbe first theorem with 

the extreme members slightly changed. Tbe symmetry of the xk is of course 

essential in all our arguments. 

2. Combinatorial lemmas, Let (or,. 9 * , a, be positive numbers which are 

free in the sense that no two of the sums zt at +_ l . q I!Z a, have the same value, 
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These sums, arranged in decreasing order, we denote by St, 8. l , Sz,; qi is the 

excess of plus signs over minus signs in Si; and Qi = qi + 4 - - + qp It is clear 

that Q2" =OandthatQi=QzneiforI <i < 2n. 

LEMMA 1. For 1 5 i 5 2”-l, 

n 
OIQi- i 5 ([n/21+1) [n,2l - 2 

( 1 

n-l s 

The proof of the first inequality, which is evident for n = 1, goes by in- 

duction. Suppose n > 1 and i < 2n-1. Define Sj! and Qi for 1 5 j 5 2”-’ just 

as Sj and Qj were defined above, but using only al, l l . , a,, 1. Let k and 1 be 

the greatest integers such Si - a,, 2 Si and SI + an 1 Si. It may happen that 

no such k exists; then i = 1 and the proof is relatively easy. Otherwise k 5 1, 

k 5 2n-2, and i = k + 1. If 1 2 2n*2 then 

Qi = Qi - k + QT+ 2 = (QL-k)+(Q;-2)+21 >_i. 

If 2n-2 < 1 < 2n-’ then 

=(Q,‘-k)+(Q2n’L.I-2n-1+1)+2n”--+f ,2+’ >_i* 

Finally, if I = 2n-l then, recalling Qln-, = 0, we get 

In order to prove the second inequality we note that for each i the maximum 

of Qi is attained if the ai are given such values that Sj > S, implies qj 1 qk, 

-this happens if the aj are nearly equal. Assume this situation. Then if n is 

odd qi is positive for i 5 io = Zn-’ and Qi - i is maximum for i = io. We have 

[n/21 
Qi,-i,= C (n-2k) l -2n*‘=([n/21+1) (rn;21) -2”“. 

k=o 0 

A similar computation for n even gives 

y-1 - n 

( ) n/2 
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for the index in of the maximum and the same expression for Qi, - i,. This 

completes the proof. 

If Cl? *a*, cn +1 are real numbers 

indices j for which 

et m(cr, ..a , c,+ I ) be the number of 

We now consider n + 1 positive numbers ai, l . . , u,,+~ which are ‘free’ in the 

sense explained above, and define 

the summation being taken over all combinations of plus signs and minus signs. 

LEMMA 2. 

2 nS1 ~hl ~4&/21+1) 

It is clear that M = 2at1 if 

a,+1 > al+s..+a,, 

and we reduce the other cases to this one by computing the change in Al as 

ant1 is increased to a1 + l . * + a, + 1. Using the notation of Lemma 1, we sup- 

pose that S; + 1 < aat1 < Si, where i of course is not greater than 2a-‘, and that 

a A+, is a number slightly greater than Si. We now compare h4 ( al, l . l , a,, a,+r) 

with M(at ,-mm ,a,, a,‘+r). The inequality a,+1 < Si becomes a,l+t > Si if 

aa+ t is replaced by ai+ r, and we see that there is a contribution +4 to A4 coming 

from the terms + ai +r in the four sums rt Si k a;+,. In like manner, each + aj oc- 

curring in S, contributes - 4 to IV, and each -aj in Si contributes +4 if j is less 

than n + 1. So 

M(a* 9-a l , am a,t1)- A-l(a1, l ** 9 a,, a;t‘)=4(qi-l), 

where qi has the meaning explained at the beginning of this section. Thus in- 

creasing a,+ 1 to a r + l l . + a, + 1 decreases h! by 

4(Qi-il=4 C (piklJ9 

jli 
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and Lemma 2 follows from Lemma 1. 

There is another more direct way of establishing the first inequality of 

Lemma 2. Since the inequality is trivial for n = 1, we proceed by induction. 

Considering the numbers (at + a2 ), u3, - l l , an+t we assume that there are 

at least 2”-’ inequalities of the form 

(21 aj > U tj > 2) 

(31 (al + a2) > V, 

where the right members are positive, and U is a sum over (al + a2 ), a3, . . . , 

aj.19 ajti, *‘* t a, t1 with appropriate signs, and V is a sum over ~3, - l l , a,, +t. 

From (2) we obtain an inequality (2’) by dropping the parentheses from (at +a2) 

in U; from (3) we obtain an inequality (3’): at > a2 - V or aI > V - a2 ac- 

cording as a2 is greater or less than V (we assume without loss of generality 

that at > a2 ). We consider also the numbers (at - a2 >, a3, -. l , a,+ l and 

inequalities 

(5) (al - a2 1 > T, 

of which we assume there are at least 2 n-2. From (4) we derive an inequality 

(4’) by dropping the parentheses from (aI - az ) in U, and from (5) we derive 

an inequality (5’): at > az + V. It is easy to see that no two of the primed 

inequalities are the same. Hence there must be at least 2 l 2n-2 = 2”” in- 

equalities 

ai> C IkUj 
if i 

(l<i<n+l) 

in which the right member is positive. Taking into account the four possibilities 

of attributing signs to the members of each inequality we get the first statement 

of the lemma. 

We now translate our result into terms of probability. 

LEMMA 3. 
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Here of course the random variables satisfy the conditions imposed at the 

beginning of $1 1, and 4(n) is the function defined there. Since the joint distri- 

bution of the xi is unchanged by permuting the xi or by multiplying an X; by 

-1, we have 

= 1 Elm(xI, . . . 
n+l 

,a+*)) 

1 
=e E 

n+l 
I 

& c m(*lx*), **a r+)xntll) 
2 t,- 

1 
= 

(n + 1)2n+’ 
EIM(lxl I ?..‘, Ixn+*l)l, 

where m and M are the functions defined above. Since 1 xt 1, . . - , )x,+1 ( are 

‘free’ with probability one (because the distribution of the xi is continuous ), 

Lemma 3 follows at once from Lemma 2. 

Our later proofs could be made somewhat simpler than they stand if we could 

use the inequality 

for m 5 a. This generalization of Lemma 3 we have been unable to prove; and 

indeed a corresponding generalization of Lemma 2 is false. However, we shall 

use 

(6) P < 6$(1n/mlJ < 3Cn/m1”‘2, m,n - 

and establish it in the following manner: 

Let a = [n/m I, and write 
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u=xi + w.w +xom, 

2 =Y,t,+'*'+Yamtm, 

where the yk have the same distribution as the xj, and the zj and yk taken 

together form an independent set of random variables. Let E be the set on which 

the four inequalities 

hold; by Lemma 3 the probability of any one of these inequalities is at least 

1 - 4 (a + 1); hence E has probability at least 1 - 414 (a + 1). Similarly the 

probability of the set F on which the two inequalities 1 v + z 1 < ) u ) hold in at 

least 1- 2$(a). N ow clearly(a+vI > lull onEFandalso 

3. Proofs of Theorems 1, 2, 3. It is easy to see that the probability of 

Sk and ‘kt, differing in sign is one-half the probability of sk + 1 being larger in 

absolute value than sk. Thus 

and Lemma 3 implies Theorem 1. 

Let us turn to Theorem 3. Clearly the probability of s; and 

differing in sign is L/4. Also, s~+~ - szk# is independent of both s; and Szk#, 

for 

(k+a)‘>(l+u)*k’,2k’. 

Thus si+s - s2 k , has an even chance of taking on the same sign as S2k *; so 
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we must have 

Now, if sk) sL+, < 0 then must be at least one chartEe of sign in the sequence 

s;, sitp a’* , S;+a* Hence, if pk is the probability of si and si+t differing 

in sign, we have 

and consequently 

(7) 

This proves the first half of the theorem. 

As a preliminary to proving the second half of the theorem we show that the 

variance of lli,’ is 0 (n ) by estimating the probabilities 

pi,i = Pr(szTs;+r < 0 & s/s;+t < 01. 

Suppose that i < j.; set 

u = Si’, v = si’+ I - S$f , w  = S]? - ‘i’+ 1 9 
‘. 2 = syt , - si ) 

and define the events 

A : uv < 0, 

B : lul < Iv19 

c : (UfV)fW)Z < 0, 

il : Ju+v+w) < (ZJ, 

D’: (WI < jz(, 

E : Iz- WI> Ju+v(. 

Then 
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pi = PrIABI, pi = PrlCDf, and pi,i = PrIABCD 

One sees immediately that A, B, C, D’ are independent, and tha 

Writing E” for the complement of E, we have 

ABCD = EABCD iEA3CD’c i,+ ARCD’, 

and 

D’c ,t i- D. 

Hence 

t ED=ED’. 

Note now that z - w  is the sum, of (j + l)‘- (; + 1)’ of the x’s, and u + v is 

the sum of (i + 1 )‘, of the x’s, and that moreover 

(j+ l)‘- (i+ 1) ‘2 [(l+co+- 11 (i+ 1)‘. 

We may thus apply the inequality (6) following Lemma 3 to obtain 

PrtFI < 3[(1+~)j-~-2I-“~ 

provided j - i 1 a. This yields an upper bound for pi j; a similar argument 

’ yields a corresponding lower bound. We have finally 

pi,j 
= pipj + O1)l+cc[“i’~‘~z~ 

for all i and j. This estimate shows that 

(8) ElNi2\~ C Pij 

15 i,jLr 

=- cpi pi +XOUl +a)-li-jl/2j = ElN;i2 + O(n). 

Let us denote E ( Ni j by b,. It follows from (71, (8), and Tchebycheff’s 
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inequality that 
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for an appropriate constant c and for all positive E. Thus 

is the kth term of a convergent series, so that according to the lemma of Bore1 

and Cantelli 

with probability one. Note also that 

b 

b 
k2 +1 * 

(k+t I2 

Now for every natural number n we have 

with k so chosen that k2 5 n < (k + 1j2. Since the extreme members tend to 

one as n increases, the proof of the second half of Theorem 3 is complete. 

Theorem 2 is obtained from Theorem 3 in the following way. Let r be a large 

integer and let l’, 2’,+ - - be the sequence 

r, (ri l), 

r21 r(r+ l), (r-b l), (r+ 112, 

.  .  .  .  ‘ .  .  .  .  .  

,lJyr+l), *b’,(r+l)‘, 

P jr “-l(t+ I), ---, (r+ ljm, 

. . . * . . . . . ., 
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where m is defined by 

rmtl >_ (r+ l)l+l > rm* 

Let as call j ‘favorable’ if (j + l)‘= (1 + l/r)j: Then it is easy to see that: 

a) (l+l/r)j’<(j+l)‘((l+r)j’forallj; 

b) therearek+o(k)favorablejlessthank(askjcc); 

cl logk’=klog(l+L/r)+o(k). 

Now, if j is favorable then 

j’=fi (j+ l)‘- j’l 

and we may apply Lemma 3 to sj’ and s.‘+ - s . . Thus 
I’ I 

Prts)y++l < 01 =+~~s;+I-s; I ’ bjv I 2(11,r) - 

> - c 
j favorable 

Note that for every natural number n 

&l ‘k Y’ 
-> 
log n - log (k + 1)’ 

9 

where k is chosen so that k’ < n < (k + 1): Consequently 

24, 2Nk’ 
lim inf - 1 lim inf 

2N; 
= lim inf 

n-00 log n k-+oo log (k + 1)’ (k+l)log(l+l/r) 

’ liminf ElN~1(r+l)log(l+l,r)= 

1 

(rt 1) log (l+ l/r)’ 
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Letting r + co we have Theorem 2. 

4. An example, Our construction of a sequence rr, x2, +a l for which 

NJlog n + l/2 with probability one depends on the following observations. 

For given k define the random index i = i (k) by the condition 

lxil = ma lxjl, 
tij<k+l -- 

and let Ak be the event 1 xi 1 > c 1 xj I, where the summation is over i f i, 

1 5 j 5 k + 1. Let fk be the characteristic function of the event ‘sk sk+ 1 < 0,’ 

and gk is the characteristic function of the event ‘i(k) = k + 1 and further 

(x1 + l l l + zk)xk+t < 0'. It is clear that g,, g2’ 80 l are independent random 

variables, that 

1 
2Prjg,=lI = - 9 

(k+l) 

and that the strong law of large numbers applies to the sequence g,, g,, . l l 

also fk = gk on A, ; if moreover c Pr { zk ] < cc (here A”k is the complement 

of Ak) then, with probability one, fk = gk for all but a finite number of indices. 

In this case we have, with probability one, 

N, = 5 fk = & gk + O(1) = k 
1 

k=t 2(k+ 1) 
+ o(logn), 

k=l k=t 

the last step being the strong law of large numbers applied to g,, g2, l l =. 

Thus, in order to produce the example, we have only to choose the xi so that, 

say, 

PrlZkI = 0(km2). 

To do this we take xj = f exp (exp l/uj ), where ut, u2, l l l is a sequence 

of independent random variables each of which is uniformly distributed on the 

interval (0, 1) and the f stands for multiplication by the jth Rademacher func- 

tion. For a given k let y and z be the least and the next to least of u I, l l l , uk+ ,. 

The joint density function of y and z is 

(k+l)k(l-dk-’ (0 < y < 2 < 1). 

Consequently the event 
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Dk 
1 1 1 

:->--f- 
Y 2 k2 

has probability 

k(k+l) 
/ 

k2/tk2+ I) 
dr 

/ k2;,(k2-y+’ - 
z)k-‘dz = l+O(k’2), 

0 

and the event Ek : l/z > 3 log k also has probability 1 + 0 ( ke2 ). It is easy 

to verify that the event Ak defined above contains Dk Ek; thus 

Prt&! = O(k-2), 

and our example is completed. 

5. Proof of Theorem 4. ‘PPe prove Theorem 4 in the form 

Tnl c -1 1 

k 2 
log n f o(log n) 

l<k<n 

Sk>0 

by much the same method as we proved Theorem 2. First, 

Next, the inequality following Lemma 3 yields 

so that 

PriISl-Skj < ISkI] = 0 

for I > k. Consequently 

(1 > k). 
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Thus the variance of Tn is of the order of log n. Setting n (k 1 = 2k2, we have, 
according, to Tchebycheff’s inequality, 

for an appropriate constant c and all positive E, Since the right member is the 

kth term of a convergent series, the lemma of Bore1 and Cantelli implies that 

‘n(k) ---) I 

log n(k) 

with probability one. Note also that 

logn(k+l)_,l 

logn(k) ’ 

Now, for any n, 

%Ik) Tn T 
-< 

n(k+l) 

log n(k+ 1) L 
log n - logs(k) 

where k is so chosen that n(k) 5 n 5 n (k + 1). Here the extreme members 

almost certainly tend to one as n increases, This proves Theorem 4. 
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