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Let (a, 6, Pr) be a probability space, i.e., a= (0) is a set of elements 0, E= {E} is a 
Bore1 field of subsets of n called “events”, and Pr is a countably additive measure 
defined on & and satisfying Pr( Q)=l. Pr(E) is called the “probability” of the event E. 

A (mathematical) one-dimensional Brownian motionV is a real-valued ’ function 
x(t, 0) of the two variables t and 0, defined for all non-negative real numbers t, 
0 < t < co, and for all o E Q, which has the following properties : 

(BJ x(0; o)=O; 

(B2) for any real numbers s, t with O<.s <t c co, the “increment” x(t, w) - x(s, 0) 
is c-measurable in w and has a normal distribution with mean 0 and variance t-s, i.e.,** 

and 

for every real number a. 

(B3) for any real numbers si, ti (i=l,, . ., m} with OG -+<sz<t2< . . .<SJH 

C& < CCJ, the increments x(ti, o)-x(si, u), i = 1, . . ., m are independent in the sense of 
probability theory, i. e., 

for any real ai, i = 1, . . ., rn, 

A 2-dimensional or plane Brownian motion is an ordered pair of two mutually in- 
dependent one-dimensional Brownian motions, i.e., a pair of one-dimensional Brown- 
ian motions x(t, w) and y(t, w) with the property that 

for any real numbers s, t, c(, s’, f’, a’, with O<s et, KS d’. 
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If we consider z(t, W) = [,u(t, w), v(t, w)] as a point in a Euclidean plane then, for 
each fixed w, z(t, w) may be considered as a function of t, defined for 0 <t < m, and 
assuming as values points (or vectors) in the plane. 

It is easy to see that this definition of a plane Brownian motion is independent of 
the choice of the rectangular coordinate system; i.e., the motion is isotropic, it is in- 
variant vis-a-vis rotations of the coordinate system. 

It is further assumed’ that the Bore1 field 6 is already extended in such a manner 
that the subset C of 0 consisting of all w for which x(t, W) is a continuous function of 
t for 0 <r < m is &-measurable and satisfies P(C) = 1. 

For any point z in the plane, for any UF n and any real numbers a, b with Cl <a <b < x:, 
let us put 

La,b(Z’; m) z {z’ + .z(t, cd) I a<t<‘b :, (5) 

L,(z’; W) = Lz’ +z(t, ti) 1 a< t < ic j, (6) 

L(z’ ; w) = Lo(z’;w) = (z’+z(t, w) 1 o<. t < a : (7) 

where the + sign in the above formula,(as well as + and - in similar context in the 
sequel) r;fers to vector addition in the plane. Furthermore, when z’=O, i.e., coincides 
with the origin, we use the abbreviations 

La,b((IJ) = La,b(O; w), L,(w) = L,(O; Cd), L(w) = L(0; a). (8) 

&b(Z'; ti) is called the (a, b) path of the plane Brownian motion starting from z’, and 
L{z’; 0) is called the path of the plane Brownian motion starting from z’. 

For almost all t,), La,b(z’; U) is a continuous image of the finite closed interval 
{t ] a.<t<b ) and is hence a compact subset of the plane. 

A point zo in the plane is called a k-multiple point or a multiple point of multiplicity k, 
(k = 2, 3,. . . .) of La,b(z’; W) [resp. of La(z’; w)] if there exist k real numbers tl,, . . , fli ’ 
with a<tl <... <tk<b [resp. a<:tl c... <tk< ~1 for which -70 = z’+z(t;; ti), i=l,..., k. 
It is clear that z. is a k-multiple point of ,5&z’; ti) [resp. L,(z’; Q)] if and only if zo - z’ 
is a k-tuple point of La,b( a) [resp. La(w)]. 

P. LPvy4 proved that almost all paths L(W) have double (= 2-multiple) points. In a 
previous paper?, we proved that if one considers Brownian motion in higher dimensio- 
nal space then Levy’s result remains valid in 3-space, but that in a space of higher di- 
mension than 3 almost all paths are free from double points. The main purpose of the 
present note is to prove that almost all paths of Brownian motion in the plane have 
points of arbitrary high (finite) multiplicity. Our methods are, in part, similar to those 
previously usedz, but we have to rely much more heavily on considerations of a com- 
binatorial nature. We state explicitly our main result: 

THEOKEM 1. Let M be the set of all w for which L(w) contains k-muitiple points for 
every k = 2, 3, . ., then Pr(M) = 1. 

Since the proof is rather involved, we shall lead to the theorem through a sequence 
of Lemmas. 

For any point z in the plane we denote by ] z ] the distance of z from the origin. 
We denote by p( P, p) the probability that Lo,l(z’; a) have a point in common with 
the circle ] z ] < p when z’ is a point at distance P from the origin (because of the iso- 
tropy of the Brownian motion this probability is the same for all J’ with ] z’ ] = 9). In 
other words: we put for every 13 10 and P >O 



(9) 

When 9 = 1 we abbreviate the notation and put 

P (9) = P (F, 1). wo 

LEMMA 1. p (P, P) is a monotone non-decreasing function of P and a monotone non- 
increasingfunction of’ p. 

Proof. The assertion about p is obvious. To prove rigorously the other assertion, we 
use the homogeneity property of the Brownian motion (cf. e.g.5). According to this 
property, a space-scale change of 1 . . 7. is exactly compensated by a time-scale change 
of 1 : 2.2; thus for every is >O we have 

P 6,9) = Pr ( inf osrs x2 
I (;>a, 0) + z (t,ti) 1 G hp), 

-- 
whence it follows for nzl that 

p (P, 3) 2 p (AP, w) 2 p (P, Gq. 

LEMMA 2. Let 0 < p (9 tR, tka 

Pr ( I (B, 0) + z (t, w) I <P before 1 (P, 0) i z (t, m) I >R) = log (R/Y)/log (R/F). (11) 

Thus (11) gives an explicit expression for the probability that L(( $,O),w), which2 
passes with probability 1 through both circles 

I (M) + z (f,~) I < :: and I (WI + z (t,m) I <R, 

encounters the first circle before it does the second. 

P~OCJJ For a point < in the plane let u( 5) = Pv( ] 5 +z(t, ti) ) < i: before ] < +z(t, m) ] > R), 
then3 u(c) is a harmonic function of c in the ring p < 1 < I <R and its boundary 
values are u(r) = 0 for I z I = R and u(T) = 1 for I : I = p. Consequently 

LEMMA 3. For every 0 < p <l Ice have* 

p (9) a/log(l/s). 

Proof. By Lemmas 1 and 2 we have 

P (PK'pf.( I 04) +z(t,w) 1 <p before I (l,O)+z(t,w) 1 222)-t 

+ Pr ‘o”gP,l U,O) + z (4”) I 2 2) .Pr w:, I W) -t- z 0,“) I < P) = 

= log 2/lag (2/ P) + sp ( P, 2)<log 2/[log-2 + log (l/ P)] + ap ( P) 
with 

Hence 

i.e., (12). 

s = Pr ( sup I (1,O) + 2 (I,W) I 22) < 1. 
OS? 51 -- 

Y (P& ’ 
log 2 1 log 2 

log 2+log(l/ p), <I-s _ log(l/ P) 

* cl, cz,..., cl7 are finite positive constants. 

(12) 
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LEMMA 4. For every 0 < ,D c@ tl WV have 

P (P, B) < [Cl + log u/P>l/log (l/ P). (13) 

Proof. As in the proof of Lemma 3 we have 

P (P, P)SPr ( I (B, 0) + z (f, w> I <P before I (8,O) + z (t, 0) I ~1) + Pr (,~P,~I (p, 0) + 

-+ = (4 ~1 I 21). Pr (,E$, 1 (1, 0) + 2 0, u> I < P) <= log (1/9)/10g(l/;) + P(P), 
-- 

and (13) follows from (12). 

LEMMA 5. For 0 < p <l/2 we have 

P (P)>Ca% O/P). 

Proof. Let N > 1 be an integer and put 

ti = l/2 -t i/2N (i = 1, . . ., N). 

(14) 

(15) 

Let Ei 4 (w 1 1 (1, 0) +z(ti,ca) 1 < P > be the event that the Brownian motion starting 
at distance 1 from the origin be within distance p from the origin at the time ti. Let 
Pi denote the probability that Ei occur and p~ denote the probability that both Ei and 
EjOcCUr(i,j= 1,. . ., N). From (Z), (4) and (15) we have 

pj = (l/2 d) *[ J e-(~U-1)2+v)~‘2*i du dv 
uz,vzcp2 - 

>(I/2 =). f p2 ./(P +1j2--p2 

or 

Pi>C, P2. (16) 

Similarly, we have for 1 <i <j<N 

pij~pi.Pr(Iz(f,~)-z(t,GI)I <2 F> =p/ (.1’2”(fj-{)) J ,I’ e(UZ+yz)‘z(~-i~ dudv 
uZ+v2~4 ~2 

and 

PC ct[N/(j---i)] p2pi. (17) 
NOW, the events Ei all imply that &,l((l, 0);~) has points within distance p from 

the origin, an event whose probability was defined by (9) and (10) as p (p). Hence, 

by (17), 

P (PI2 5 Pi - c Plj 
i=l 1 ii<jSN - - 

N N-11 N 

> t?i p (l-c4 PIN c s!- )~_U-C~P~N jzl F) &pi ;=I i i=i+l j-i 

whence 

P (P) > (l--cs p2 Nlog N) i&i. (18) 



368 BULLETW OF THE RESEARCH COUNCIL OF ISRAEL 

Let c’ = l/(1 +8cs) and put 

N = Cc’/ P2 log (I/ P)] 

(the square brackets denoting the integral part). 

Then we have, for 0 < P < l/e, 

(19) 

P*Nlo&v~ [c’/log(l/ F)] *21og(l/ P) <1/2cs. (20) 

Let now FO >O be such that PO <l/e and satisfy furthermore the condition 2 pO* CC’. 
Then for every 0 < p < r̂o the integer N calculated by (19) is greater than 2, we may 
thus apply (18) and (20) to obtain 

P (P>>l/2 i P 
j=:l i 

(0 < P < FO). 

Thus, by (16) and (19), 

P (PI >(c#> P”[ Cl P21%U/ PI] >m%w p) 

for 0 < p < PO. Since p( p) >p( PO) >O for P > PO, (14) is valid for 0 < p <l/2 and the 
Lemma is established. 

LEMMA 6. For every 0 -c F ~1 we have 

pr (,,,i,:fi i I z Cf~W) I < PI < Q/log Cl/ P). (21) 

Proof. From (2), (41, (13) and the isotropy of the Brownian movement we have 

pq,*$!g, 1 ZO,W) I ,< P>@f1-+/2,~) I < Pk- JP c P,B)$ Pd I z(ll*,w) I ,< a) 

-= 

< (11 x) J J ~-~‘~“*d* dv + $ c~$S1~j”= 2pe Lp2dg 

a*+,2 51/4 - 
2 

< ~*+[2/log(l/ ~11 $ [cl+log(l/P)lPe-p2 dP 

= P2 +cs/~og(‘l/ P) 

since the last integral is convergent. This proves (21) for 0 < p ~1. 

LEMMA 7. For every 0 < p <l/2 we have 

Pr( ,,@& I z (f,~) I c F) > cg/log (l/ P). 
-- 

(22) 

Proof. By. Lemma 1 and the homogeneity property we have 

Pr ( inf 
l/2 951 -~ 

I z(f,u) I s P) 2 Pr( Iz(1/2,~) I g l/44 -Pi- (o$I,z I U/40) + 
- - 

+ z(t,w) I < P) = ClOP(dT P). 

In view of (14), (22) follows for 0 < p <1/(2t’Z-)and hence also for 0 < F <l/2. 

The next Lemma is rather complicated, but it is quite close to the theorem we wish 
to prove. 



LEMMA 8. Let k >l be a fixed positive integer. Let H be a positive number and n a 

positive integer and let 

-Hn 
2/k 

p=e (23) 

For ~1, ~2 = 1, 2, . . ., n put v = (~1 - I)n + W, and, for \I = 1, . . ., n*, let 

Z v= (W) + (~dW, (l/5) + ($n)) (24) 

and let s,( p) denote the circle {z 1 1 z - z, I c P I. Let F, = F, (H) be the event that 
there exist k numbers ti, i = 1, . . ., k satisfying 

O<tl<l, 1/2<fi- ti-l<l (i = 2,. .., k) (25) 
Ibr which 

XOf4 e s ,$ p) (i = 1, . . ., k). 

Let FCn) = F(“)(H) be the union of the events F Y) 
V==l , . . .,n*. 

Then 

lif;“= i;f Pr(F Crr’) > cll/Hk cw 

for all sufficiently large H. 

Proof. Let q,, be the probability that F, occur and qV,“’ be the probability that both 
F, and F,’ occur (Y, V’ = 1, 2, . . ., a’). 

We may assume H > 1 so that P < 1 /e and the estimates of the previous Lemmas 
become applicable. Since 1 z, 1 < 1 we have from Lemmas 1, 5, and 7* 

qy~Wo$>, I z(4~) - z vl < P> .[lPPr( inf 1 z(t,w) 1 c p)lk-’ 
\ 1/25r 51 - - 

>[c6/log(ll ?)I93 *(c9/log(l/ P)l? 

Since, by (23), [log{1 / p)lk = Hkn: this gives 

q sc,2/Hkn: (V = 1, 2,. 
Y . .) n*). (27) 

For V#V’ let PI be the probability that &I(O) pass through at least one of the 
circles S,( F) and S,‘( F); let PZ be an upper bound for the probability that Lo,I(z;w) 
with ZES,( p) encounter S,J P); and let P3 be an upper bound for‘ the probability that 
a Brownian motion starting at z’ES,( F) encounters S,( P) again for some l/2 < 3 < 1, 
By obvious symmetry considerations we have for v.# v’ the inequality 

9 
v, y 

,<P*(P2 +P3> 2k-‘. 

Now by Lemmas 1 and 4 we have 

Pl <p( P, I z, I > -t- p( P, I Zv' I ) < 2P( F, I Zl I ) 42 [Cl flog o/ I z1 I )I Ilog Cl/ PI. 

* The conditional probability of being in Sv ( p) at time ti, given that the path is at z’ESv( p) at 
time ti-1, is 2 the probability that z’f x (ti-t;-1, 0) is in the intersection of Svl P) and a circle 
of radius P about z ‘; this intersection con&s a iector of opening 2 n/3 and he&e, because of 
the isotropy property, is greater than the second factor. 
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Also 

Pz<p( p, I z,-2,’ I -2 F). 

Now, by (24), 1 zy--2,’ I 11/2n while, by (23), we have p c 114~1 for all PI >no=no(k). 
Hence for all n >no we have from (13) 

p2-4c1 -+lo&/ I 2, -“,,I )I/log(l/ PI* 

Finally, by (21), 

p, tpr ( ,,,i,gf,, I z(t,a) I ~2 ~>-4logU/2 P>. 
-- 

Combining these estimates, we have for n =-no and V#V’ 
-I 2k 

4 <C13{ 11 +logUl I2 -zy, I >I/Wll P> 1 v,vI Y -I 
or, by (23) and (24), 

4 
v, d 

<[C,,/H2kn4] log= (l/ I zV-zV,I ). 

From (27) and (28) we have 

p&7 22 \,gY>, - 2l 4 
15 v<v’S n2 %-j’ 

2k 

XI~IH~--CIJJH * l/n4- c log2ko/ I =,,- zy, I 1. 
1 gv<vtg.2 

(28) 

Now this last sum is smaller than twice. 
n2 

n2 ~~~10g2*~1/12~-z~l~~n~ i (2~+1)log2k(l,Izv-z*I) 
y=2 

= n2 ; (2v +l)logzk [2n/(v-1)] 
v=2. 

<5n2 i jlogZk(2n/j) 
i=l 

< 5123 max u log2 k(2n/u) 
15 N 5 n 

- - 

<Cl924 

(CU depends on k, but k is fixed throughout). 

Hence 

Pr(Fcn\ > c12/Hk - CW,/H~~ 

for all n >izo, Taking Hk >~CM/CI~ we obtain (26). 

Proof of Theorem 1. Let k > 1 be fixed. For every WE !A let 

(2% 

g,(a) = inf 
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where the inf is taken over all sequences tl, . . ., tk satisfying (25). Since the path is con- 
tinuous for almost all Q, gk(w) is easily seen to be a random variable. As the event 
F(“) of Lemma 8 implies gk( w) t2k F and since P+ 0 as Al+ a; we have 

Pr(gk(w). < E) >c17 >o 

for every E >O (where ~17 is, of course, independent of E). Hence, Pr(gk(o) = 0) 1~17 
which implies, for -all continuous paths, the existence of a k-multipIe point of l& (w). 
For every integer j = 1, 2, . . . let Gj denote the event LuW1, k, jk (w) has a k-multiple 
point. Then Pr(Gj)=Pr(Gl) >O and the events Gj are independent. Therefore, with pro- 
bability 1 infinitely many of the events Gj occur, and hence there is probability 1 
that L(O) have k-multiple points. q. e. d. 

Using the homogeneity property of the Brownian motion, we deduce immediately 

THEOREM 2. Let a, b be any positive numbers wifh 0 Qa tb < cc then, with probabili- 
ty 1, the (a, b)-path Ln,z, (ti) has multiple points of arbitrarily high (finite) multiplicity. 

It also follows that there exist k-multiple points for which the intervals between re- 
turns to the point are arbitrarily large. 

In view of the fact4 that, for almost all w, L(w) is dense in the entire plane we have 
from Theorem 2 the following 

THEOREM 3. For almost all w the set of k-multiple points of L(w) is dense every- 
where in the plane for all k = 2, 3, . . ., 

REFERENCES 

1. DOOB, J. L., Stochastic Processes, 1953, New York. 
2. DVORETZKY, A:, ERD%, P. and KAKUTANI, S., 1950, Acta Scientiarum Mathematicarum, 12, 75. 
3. KAKUTANI, S., 1944, Proceedings Academy Tokyo, 20, 648. 
4. LEVY, P., 1940, American Journal of Math. 62, 487. 
5. LEVY, P., 1948, Processes stochasfiques et mouvements brolvnietts, Paris. 


