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Some remarks on set theory. V.
By P. ERDOS in Haifa (Israel) and G. FODOR in Szeged.

Let £ be an arbitrary set of power w and suppose that with every
element x of E there is associated a non empty subset of E. Two distinct
elements of £, x and y, are called independent, if x¢f(y) and pgf(x). A
subset F of E is called free if F has only one element or if F has at least
two elements and any two of their distinct elements are independent. We
say that the subset /* of E has the -property 7'(q,p), where y and p are
two cardinal numbers such that ¢ = m, p = m, if

P—=Uf@)—=qa and U (F&x)0fy)) <
e el

L o

A subset C of E is called closed, if for every element x of C, f(x)&C.
We assume !hai Uf(x) —=m and one of the following conditions hoid

for the sets f(x):
_ (A) There is a cardinal number n-<m such that, for every x<E,

Fi <.

(B) There is a cardinal number u< m such that, for every pair of dis-
tinct elements x and y of E, f(x)nf(y)<n.

(C) If x,y€ E and x =y, then f(x)czf(¥) and f(»)czf(x).

(D) For every x¢ E, the power of the set of elements y, for which
f)nf()=-0, is smaller than m.

We deal in this paper first with the following two questions.

1. Whether or not these conditions imply the existence of subsets with
the property 7(o,p) of E.

2. Whether or not these conditions imply the existence of free sets of
certain cardinalities.

It the condition (A) is satisfied, then both questions are investigated
(in some cases by supposing the generalised continuum- hypothesis) (see [1],
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2], [4]). For instance E has a free subset of power m and a subset with the
property 7(m, m) (if m is the sum of u cardinal numbers smaller than m,
the generalised continuum hypothesis is assumed).

In the sections I, II, Ill a number of results is given with respect to
the questions 1 und 2, if one of the conditions (B), (C), (D) is satisfied.

Our most interesting unsolved problem is the following one: Let m be
any cardinal, f(x) < mexTﬂ:f(y) < < n. Does there then exist a free subset
of power m? We can only prove (without the generalised continuum hypo-
thesis) that there always exists an infinite free subset (theorem 8). Perhaps
the most striking formulation of our unsolved problem is the case m=—N..
noo-Nee Fm=N,, n=Fk< N, we can prove (without the continuum hypo-
thesis) the existence of a free subset of power ¥, (theorem 6).

Finally we deal with the following two questions:

a) If the condition (A) is satisfied, does there exist a closed proper
subset of £, of power m?

b) If the condition (A) is satisfied, do there exist two almost disjoint
closed subsets of E, of power m?

These questions are completely solved in section V.

Notation and definitions. Throughout this paper. the symbols / and
denote the cardinal number of the set £ and the ordinal number . respec-
tively. For any subset /" of £ let
2= Uf and  [f= U (F00fO).
For any x€E, let f'(x)- {y:x€f(y). For any cardinal number r we denote
by ¢. the initial number of r, by v* the smallest cardinal numer for which
v is the sum of r* cardinal numbers each of which is smaller than v, by v
the immediate predecessor of v provided that such a predecessor exists. We
say that v is singular if v can be represented in the form v — :‘_}1, where

re

F- v, v, v, and regular if no such representation exists.

We say that the sets £, and £, are almost disjoint if F, 0 F. < min (F,, Fl).

A

We assume in this section that the condition (B) holds on the sets
f{x) and we give some results concerning to the questions 1 and 2.

We begin by proving two lemmas.

Lemma 1. Let A be a set of power m,w = N,. There is a sequence
1Ay, of the type ... of subsets of A such that
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1. A= U A,

&
P

. Ag=m for every &< gy,

2
3. .‘-'l_;h.A,. =1 for every r,u, r < gy, #t < ¢y and v ==y,
4. A.— (J Ai=w for every ¢ < g,

PN
5

. if x€ A, then there are at most two ordinal numbers v and u, sucl
that x€ A, and x € A,

6. if U (A,nA)<m, then I'<m.l)
prel

Proof. Let |B;}c ,, be a sequence of subsets of A such that B;=m,
A= |J B: and B,nB. =0 forevery u, r with » < ¢, ¢ < ¢, and r=-u. We
£ Fm
define the sequence |A:}: , by transfinite induction as follows: Let A,— B, .
Let now 3 be an ordinal number, 0 < 3 < ¢,, and suppose that all sets A,
where 0=:< 3 have been already defined such that the conditions
2,3,4 hold for £<3; u,r<g; and e¢<g Let Ag=D5Bp U{xgc 3, where
x: € Ac— | Ac—ix¢): ¢. It is easy to see that the conditions 1—6 are
e eLE
satisfied.

Lemma 2. If A is a set of power m, m >§,, m has immediate prede-
cessor and m- is regular, then there is a sequence {Ag)c. ¢, of the type qu,
of subsets of A such that

1. A=\ A,

) & P
2. Ag=wm for every &< (g,

3. A;nA, < for every distinct v, u, v < ¢y and u < gy,
4, Ae— -Ag=m" for every « <y,

i U';___(';i"ﬁ,".'ﬁ_ﬁ_,‘){m, then I" << m.
l,‘.tngl
Proof. Let -{Bg}/{, ro De a sequence of subsets of A, such that
B:= m,A==|J B; and B,nB,.—0 for every distinct », # < ¢,.. We define
£ Pm
the sequence {A¢}; , by transfinite induction in the following manner: Let

A,= B,. Let now 2 be an ordinal number, 0 < 8 < ¢, and suppose that all
sets A, where 0 = &< 3, have been already defined such that 2,3, and 4
are satisfied for £< 2; u, v <g; and e < 2.

i

1) It is clear that 6 follows from 3 and 5.
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lemma 1. If #> ¢y, then let {CP}. , - be a wellordering of the set

{A¢): p. For every »r< 3 there is a & <¢. such that A, == C“f' Let

Ap=Bpuix,}, g,wherex,. € (A, — |J A)— U C¥. 1t is easy to see that the
Loy £ Ep -

conditions 1—5 are satisfied.
We shall now prove some negative results concerning the question 1.

Theorem 1. If m is an arbitrary infinite cardinal number, n — 2, and,
Sfor every x € E, f(x)-m, then (B) does not imply the existence of a subset
of E with the property T (m,m).

Proof. By the lemma 1 there is a sequence {E:j: , of subsets of
E with the properties 1—6 in the lemma 1. Let {x;: , Dbe any wellor-
dering of E. Let now f(x:) — E; for every &< ¢.

Theorem 2. If m is a singular cardinal pumber and for every
x€E, f(x) <wm, then (B) does not imply the existence of a subset of E with
the property T (m, m).

Proof. There exist cardinal numbers wi, my,..., mz,... (€ < ¢ ) such
that mp>m, for 3>« and w :-Elltg. Let {E¢j¢ 4, be a sequence of

e
mutually disjoint subsets of £ such that £ = [JE; and E; — m;. By the lemma
. { P
1 there is, for every &, a sequence {E}}, ,  with the properties 1—6 in
the lemma 1. Let {x{}, Fing be any wellordering of E; and f(x:) = Et for
every &< g+ and V< Obviously there is no subset of E with the
property 7°(m, m).

Theorem 3. If m> N, and wm has regular immediate predecessor, and
Sor every x € E, f(x)—w, then (B) does not imply the existence of a subset
of E with the property T(m, m).

Proof. Using the lemma 2, the proof is similar to the proof of
theorem 1.
We shall now prove a positive result concerning to question 1.

Theorem 4. If f(x) <wm, m—\N, and n < N, or 2% — Ny, for every
ordinal number 3, m = Na-1, V=N« (€ >>1) and n< 1", then there exists a
subset of E with the property T (m, m).

Proof. Suppose that the theorem is false, i. e. if M is a subset of E

for which Al < m, then, for every subset /" of E for which 1 11-S M, the power

<

of the set % is smaller than m. Define the sets My and K by transfinite

induction as follows. Let M, be a subset of E, of power less than m, and
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et K,—O0. Let now g be an ordinal number, 1 = @< ¢,, and suppose that

all sets M; and K;, where O =§< g, have been already defined such that

M: < m. Let N;=J M:. Obviously N; < m. Let Kz be a subset of £ such that
c<B

L f)N(E—Nz) =0, if x€ K,
2, Hﬂ-ﬁgNg and

3. for every x € E—Kj there is an element y of Kz such that f(x)nf(y)
is not a subset of Ng.
Let )
My=2Xl, —N,.
Obviously Mz==0 and Mg < m. Let M= U M. Clearly M<m and J K <.
Let F be the set of all sets which haveb mf.; and only one commc;n z?ement

with every M; (E<¢,). If x¢ E—U K;, then for every § there exists an
R

element y € K such that f(x)nf(y) -0, i. e. M:nf(x) == 0. Thus for every

xX€E—|JK: there exists a set g(x)€F such that g(x)=f(x). Since

Loy
F <" < m, there exists a g€ F and two distinct elements x and y of E—UK:

L ke

such that g =f(x) and g<f(y), which is impossible, since f(x)nf(y) <n.

We prove now some results concerning to the question 2.

Theorem 5. If there is an element x,€ E for which f(x,)=m, then
there exists a free subset of E, of power .

Proof. By the condition (B), for every element y € f(x.), f(?) nf(x,) < n.
Let g(x)=/f(x)nf(x,) for x € f(x,). By the theorem V of [2] (with f(x))==8
and f(x) =g (x) (x € S)) there exists a free subset of power m of E with
respect to g(x). This subset is a free subset of £ with respect to f(x).

Lemma 3. If the condition (B) on the sets f(x) implies the existence
of a subset of E with the property T(m, m), then the same condition implies
the existence of a free subset of E, of power m.

Proof. Let g(x)—{x}uf(x) for every x€E. Clearly the sets g(x)
satisfy the condition (B) for every x € E. By the hypothesis there exists a
subset /" of £, of power m, for which

Zi‘———m and []}'< m.
Put G = I'— /1. Obviously G=m. G is a free set. Indeed let x and y be
two distinct elements of G. Then x&f(y), since in the opposite case
x€g(x)yngy)c I1}, which is impossible. Similarly y& f(x).
From lemma 3, and theorem 4 we deduce
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Theorem 6. If f(x) <mm=—N, and n< 8, or 2"‘:\: ., for every
ordinal number 3, m=\, ., r==W, and n <", then there exfsz‘s a free subset
of G, of power m.

Theorem 7. If m is singular, F(x) < m for every x€ E and 2°« == N
for every ordinal number «, then there exists a free subset of E, of power m.

The proof of this theorem is analogous to the proof of the second part
of the theorem V of [2], if we use theorem 6 of this paper instead of the
first part of theorem V of [2].

Now we prove the following

Lemma 4. Let F be an arbitrary subset of E, of power m. The con-
dition (B) on the sefs f(x) implies the existence of an element x of F such
that F—f(x)==m, where f(x)={y: x€f(»)}

Proof. Suppose that the lemma is false. Then there is a subset L of E,
of power m, such that for every x€L

F—f(x) <m.

There is no loss of generality in assuming that L= E. We consider two
cases. First suppose that m is regular. Let N be an arbitrary subset of E,
of power greater than n. Since m is regular by the hypothesis, we have

UE—1 1) <m

Suppose now that m is singular. There exist regular cardinal numbers

Ny Mooy Mgy ..o (§ << ge) Such that ms > mi, > max (m*, n) for @« and
m = 2»_‘ w;.
< Fm#*

Consider an arbitrary subset Mof E, of power m,. Let M, be the set of ail
elements of M for which E—f'(x) < m. Obviously

M= M.

§ s
Since m, is regular and m, > m", there exists an ordinal number &, such
that Mz, =my. Obviously the power of the set

UE—f(x))
.r'&,]f‘f\_J
is not greater than mamg, (< m). Let now H=Nifm is_ regular and H =-M;,
if m is singular. Put K= UH(E—f"(x)). Clearly E—(KUH)=m and by
e

the definition
E—(HUK)Sf(x)
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for every x < H. It follows that
HES f(y)
for every y € E—(HU K) which is impossible, because f(x)nf()<n for

every distinct x, y €'E and A = n. This contradiction proves the lemma.
Without using the generalised continuum hypothesis we now prove

Theorem 8. If wm is an arbitrary infinite cardinal number and f(x) < m
for every x € E, then there exists a free subset of E, of power N..

natural number, k>0, and suppose that all elements x;, where 0 = ;- k,
have been already defined such that the power of the set

E = E—Uf(x)—UJ '(x)

is equal to m. By the lemma 4 there is an element y of E,, such that
E.—f'(»)=m. Let x, =y. The set {x;}; .. is obviously free.

II.

We assume in this section that the sets f(x) satisfy condition (C).

Theorem 9. (C) does not imply the existence of a subset of E with
the property T (2, m) and it does not imply the existence of an independent
pair.

Proof. It is sufficient to consider the case where f(x)= E—{x)].

The theorems 2 and 3 show that the additional assumption that f(x) < m
for every x € E does not imply the existence of a subset of £ with the
property T (m, m).

We prove now the following

Lemma 5. If m is regular, m =N, and j’:(x)a: m for every x€E, then
(C) implies the existence of an element x € E such that E—f l(x'j' s qy:

_ Proof. Suppose that the lemma is false. Then for every x¢E,

E—f'(x)<mLetA— U (E—F'(). Obviously A -2 m, because f(x) < m
HE L ;

and m is regular. If z € E—A, then f(z) D f(x), which contradicts the condi-

tion (C).

Theorem 10. If m is regular, m = N, and f(x) <wm for every x¢E,
then (C) implies the existence of an independent pair.
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___l_?_r_oof. By the lemma 5, there is an element x of E such that

E—'f'](x) ~m. Let y€ E—f (x)—f(x). Obviously the set {x,yp} is free.

Theorem 11. [f m is regular, m = N and f(x) =m for every x€E
then (C) does not imply the existence of a free subset of power greater than 2.

Proof. Let £, and £, two mutually disjoint subsefs of £, of power m,
such that E == E,UE,. Let {x;}, , and {x;} ,, be wellorderings of E, and

E., respectively. If x — x} € Ey, then let

F(x) = {athe U ixi}
and if x-= xf_\é E., then let

fO=1{xie wuix.

It is easy to see that the sets f(x) satisfy the condition (C) and there does
not exist a free subset of power greater than 2.

Theorem 12. [f m is singular and f(x)--m for every x € E then
(C) does not imply the existence of an independent pair.

Proof. Let E=={r:r < ¢y} and for every ordinal number » < g,
hy— (5" 4. a subset of type ¢y such that lim g — ¢, and h.nh,—0

£ P*
for ¢ <=1, Let now f(r)=EUEY where EV"—h, and EY' —{v:y = »).
Obviously the sets «f(x) satisfy the condition (C) and does not exist an in-
dependent pair.

HIL

We assume in this section that on the sets f(x) the condition (D) holds.

Theorem 13. (D) implies the existence of a subset with the property
T(m*, 1) i. e. there is a subset M of power m" such that (W) if x,y e M and
x ==y, then f(x)nf(y)=0.

Proof. Suppose the contrary. Then the power of a set with the property
(W) is less than m™. Let N be a maximal set with respect to the property
(W), i.e.if x@ N, then there exists an element y € N such that f(x)n f(»)==0.
We define the sets N, (@ €N) as follows: Let the element y of E—N be an
element of N, if f(y)nf(a)-=0. Since N < m" there is an element H¢N for
which N, = m, which contradicts (D).

Theorem 14. If wm is singular and n==3 then (D) does not imply
the existence of a subset with the property T(m, 1).
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Proof. Let {E¢f; . beasequence of type ¢.«, of mutually disjoint
subsets of E such that

E- U E.
s P
E¢=mg < m and m, < m, for 7, < r. Let {x;}, ,  be any wellordering of

the type ¢, of E;. We define the sets f(x) as follows: if xieEf, then
let f(x)=={x5, x5}. Obviously the sets f(x) satisfy the condition (D), and
does not exist a subset of £ with the property 7(m, 1).

Theorem 15. (D) implies the existence of a free subset of E, of
power m".

Prooif. We consider two cases: a) E has a subset F of power m

In the case a) we prove the following

Lemma 6. If McE and M <", then E— |J f(x)=n.
rTEM

Proof. Suppose the contrary, i.e. £ has a subset M such that

M<m* and E—{J f(x)<m. Then there is an element y of M such that
FCM

fﬁ') =m and f(y) has a subset F(y) of power m such that, if z€ F(y), then

j’?’):m. Since M < m", it follows from (D) that the set F(y) has an element
2y for which f(z,)nf(z)—=0 for every z¢ M. Thus f(z,) c E— | f(x) which
EM

is impossible because 7(z,)-— m.

Let EIZ{J':f:(—y_)mu}. Further let V—=FE in the case a), V=E, in the
case b) and {x,}, -4, any wellordering of the type ¢,, of V. We define the
sequence {¥,},. ¢ . as follows: Put y,— x,. Let now @ be an ordinal number,
1 = # < gu+, and suppose that all elements y;, where 0 =& < 3 have been
already defined. Let Fy={x,}s.-q, — (W} 2U( Uﬁ 7).

We now prove F= 1 In case b) this is clear and in case a) it follows
from lemma 6 (M= {}.}, -4).

Let Dy be the set of elements y € F; for which there is a » < @ such that
be the first element of Fy—D;. Thus the set {y,}, , . is defined. Put
E'={¥}+ 4. Clearly the set £’ is free and E’=m"

Theorem 16. If m is singular, then the condition (D) on the sets
f(x) does not imply the existence of a free subset of E, of power m.
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Proof. Let {Ec} -y, be a sequence of type ¢ue, of mutually dis-
joint subsets of £ such that

E= U E,

£ Pyw
Ec—mg<m and m,<m, for < Let {x3},- P be any wellordering of
the type @u, of Ee. We define the sets f(x) as follows: if x=x; € E, then

let f(x)={x{};.,. It is obvious that the sets f(x) satisfy (D) and there does
not exist a free subset of E of power m.

IV,

We assume in this section that the sets f(x) satisfy (A), and we give
the solutions of questions a) and b).

Lemma 7. If m> N, and there is a regular cardinal number v for
which 8o <n =1 <m, then fo every element x of E there corresponds a closed
subset g(x) of E such that x € g(x) and g(x) <.

Proof. Let x be a given element of £ and
{x}Uf(x)=E1s f(El):E‘.Zr"-J f(Ek--l)zEk: rwe

1t is easy to see that E.<t(k=12,..). Put g(x) =kC_1_1E;..

Theorem 17. If there exists a regular cardinal number v such that
No<n=rv<m, then (A) implies the existence of a closed proper subset of E,
of power wm.

Proof. By lemma 7 to every x¢ E there corresponds a closed subset
g(x) of E such that g(x)<tr. By a lemma of [3] (see p. 55) there is a
subset F of E for which F=m and

E— U g®»+0.
zeF
Since |J g(x) is obviously closed, the theorem is proved.
s EF

Theorem 18. If m> N, m" is singular and n=w-, then (A) does
not imply the existence of a closed proper subset of E, of power m.

Proof. Let {Epjs- ¢, be a sequence of the ftype e, of mutually
disjoint subsets of E such that £E— |J Ep and Ez= m (8 < ¢u). Further let

) A<y
{x, ¢m Dbe a wellordering of the type ¢u- of Ep. We define the sets
f(x) as follows: Let {«},. om-» be a set of type ¢u-» of ordinal numberf

such that lim ¢, = . If #>0, then let H; be a one to one mapping so
Ele T L
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the set {x7'}. ,, onto the set {xﬁ”};;’i._r’;m .. Since the powers of both sets are
equal to m there is such a mapping. If x == x.” € E;, then let
f(x)=EVVESUEY
where EY = {x"}, o, E8 = {xi,}e gy further ES) =-0, if g==0 and
ES" = [Ha(x)} if 8>0.
Obviously f(x)<n for every x € E. If g(x)= _[jE;;, where E, — f(x)
and E; = f(E, ) for k1, then by the definition of].:):‘l(x), for x == x®,
g0y = U {xPla 4,
o=f

It follows that E does not have a closed proper subset of power m.

Theorem 19, If there exists a regular cardinal number v such that
N~ ==t << m, then (A) implies the existence of two almost disjoint closed
subsets of E, of power w. If m(== Naso) IS the sum of u cardinal numbers,
each of which is smaller than n, we assume the generalised continuunt
hypothesis.

Proof By the lemma 7T to every x¢ £ there corresponds a closed

subset g(x) of E such that g(x)<r. By the theorems 1,6, and 8 of [4].
there is a subset /7 of power m of E, for which

Hi <m and Zj’z .
Let /"= /1, U/, such that £ ,\n7,=0and [, =/1,=m. Let E,— |J g(x) and
el

E, - Ufg(x). Obviously E, and E, are almost disjoint closed sets of power ni.
ET,

Theorem 20. If w> N, m s singular and n=w-, then (A) does
not imply the existence of two almost disjoint closed subsets of E, of power ni.

This follows fram the proof of Theorem 18.
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