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1. Definitions. 

Let D be the set of all analytic functions F (2) which admit an 

expansion of the type: 

F (z) = x + f2 3 + f3 12 + . . . , 

convergent for : 

Let S be a set of complex numbers such that d: E S and b E S implies 

(a-~)ES, with 1 ES. 

The function F (z) will be said to p o s se s s iterate s in S if there 

exists a function F (S , z), called the s-iterates of F(Z), defined for s E S , 

satisfying the following four conditions : 

(1) F(l) 2) = F(z), 

(2) F(s ,4 E Q , (SE S>, 

(3) F [s , F (s’ , z,] = F [(s i- s’) , z] , (s , s’ E S) , 

k=cc 

where f/$(s) are polynomials in s. 

If the set S is the set of all integers, F (S , Z) is said to be the 

integer iterate of F(z). 

If the set S is the set of all real numbers, F (S , Z) is said to be 

the complete real iterate of F(Z). 

If the set S is the set of all complex numbers, F (S , Z) is said to 

be the complete complex iterate of F(Z). 

If F (S , Z) is a compIete complex iterate of F (2) and is analytic in S, 

it is said to be the analytic iterate of F(z). 
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2. The Main Theorem. 

The purpose of this paper is to prove that: 

If the function FEDS admits a complete real iterate 

then a function F(s,z) exists which is the complete 

complex iterate of F(Z). This function is analytic in s 

and is therefore the analytic iterate of F(Z). If F(Z) does 

not have an analytic iterate, then it can only have iterates 

F(s,z) in a real set S of one-dimensional measure zero 

and in a complex set S of two-dimensional measure zero. 

This rheorem partially 611s the gap in our knowledge about the 

analiticity (in s) of the s-iterates of analytic functions. Indeed, it is well 

known 141, [6] that funcrions of the type F(Z) = fly + fZzZ + .., with 

1 fi j f 1 always have complete complex and analytic iterates. The case 

1 fi 1 = 1 , but fl # 1 is still largely open [4]. The case fi = 1 is the one 

covered by our Theorem. 

The theorem shows that the functions with ft = 1 fall into two 

complementary classes : those having a complete complex and analytic iterate 

and those who have iterates only in a set S of one- or two-dimensional 

measure zero. The two classes are not void. The function 

F(s,z)= 1 z 
- sz 

is a classical example of an analytic iterate. The function e” - 1 was shown 

by I. N. Baker [L] to have no real non-integer iterates. M. Levine [G] 

showed, using some results of the present paper, that this function 

and the functions z $ z? and 
(1 fz)’ 

have no analytic iterate. 

To prove our theorem we need some classical results from the theory 

of integer iterates of functions in 52. 

3. The integer iterates. 

If S is the set of all integers, the condition (4) in our definition 

of F (s , Z) is redundant. More precisely we have the following well known 

result which we quote in a form convenient for us and prove for comp- 

leteness’ sake : 
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Let F(z)EQ h ave the expansion: 

F (z) = z + f2 z2 + js z3 + .a. (for lzl<p , ,010). 

Then the s-iterate F(s,z) of F(Z), for integer S, which 

satisfies conditions (I), (2) and (3) is uniquely defined 

and can be expanded in the power series: 

(5) 
k=co 

F (s , z) = 2 jk (s) zk 

k=i 

(for 14 c p 6) , p (s) > 0) , 

where the functions fk(s) are polynomials in S (so that 

condition (4) is automatically satisfied) of degree ndk--~. 

Furthermore: 

(6) fk(0) = fik,i ; fk(1) = fk ; fl(S) = 1 

and the degree of fk(s) is fish-l. 

Proof [3] : Let m>O be an integer. Expand [F(Z)]” in a power 

series and put : 

k=m 

[F (Z)lm 5 
c 

fm,k Zk (with fm,k= 0 for k<m). 
k-1 

Consider now the matrix : 

F = 11 fnt,k /I > (w&=1, 2, . . . . K= 1, 2, . ..). 

It is readily shown by induction, using condition (3) that, for positive 

integer s and m, if we write: 

k=ca 

[f (s , 41" - 2 fm,k(S)Zk 
k=l 

and : 

F(s) = ilfm,s(s)Il I (m = 1, 2, . . . . k = 1, 2, . ..) 

then : 

(7) F(s) = (F) (equation berween matrices). 

Noting that the matrix F is triangular, with all its diagonal elements = 1, 

and denoting by J the unit matrix : 

J = ~/&a& (m= 1, 2, ,*. ; h = 1, 2, .*.), 
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we have, using the fact that the unit matrix commutes with all matrices : 

F(s)=[(F-J)+J]“= C(a>(F-J)’ (where (F -J)’ = J) L 
(I=0 

Let (F - J>za k be the element of the rti-th row and the k-th column of 

the matrix (F’- J)o, then: 

(F- Jl:,k = o for o>k-wi 

because the main diagonal of the matrix (F -J) is zero. 

It follows that fk (s) , which is the element (1 , k) of the matrix 

F(S) , is given by : 

b=S o=k- 1 

(8) fk(s) = c( “,) tF - J>l”,k = 2 (F -- J)Y,~( ;). 
Ii=0 0=0 

Thus fk (s) is a polynomial in s. The highest degree of s occurs in 

the term with the highest CT. This degree is thus (k - 1) or less (if 

(F - J);;; = 0). 

Noting that = 0 if cs >S we now easily verify conditions (6). 

4. Non integer s. 

We now have to examine our definition of F (S , Z) for non integer s. 

Conditions (1) and (3) are unavoidable in any extension of the definition 

of iteration. Condition (1) is arbitrary but seems to be a natural requirement 

without which the problem would be too indefinite. 

Condition (4) for non integer s, does not result from conditions (1) 

(2) and (3). Indeed, let fk (s) be defined by (8) and suppose conditions 

(I), (2) and (3) to b e satisfied. Let H(S) be a Hammel function defined 

for s ES. That is let: 

and 

H(s)$s, H(l)= I 

H (s + s’) = H(s) + H (s’), (s , S’ES). 

Then the function: 
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k=co 

F*(s > 2) = 2 fk [H(s)] .zk > 

k=L 

which, for integer s coincides with F (s , z), satisfies conditions (I), (2) 

and (3) for all s ES, but not condition (4). 

Condition (4) is therefore necessary to ensure the unicity of the function 

F (S , 2) for those values of s for which it is defined. It is also sufficient 

to ensure this unicity because a polynomial fk (s) is uniquely determined if 

its values are given for all integer S. 

Note that condition (4) could be replaced, in the case where the set 

S is dense, by the requirement that the functions fk (s) be continuous 

functions of S. 

5. The sequence {ikj. 

Consider the sequence of numbers j&j defined by: 

lk = f’k+l (0). 

(Note that we could as well have written &+I for lk. Our choice of 

notation is made to conform with other usage). Here f’k (s) is the 

derivative of the poiynomial fh (s) defined by equarion (8) so that: 

(9) lo = 0 ; Il, = (K= I, 2, .*.). 
o=l 

Equations (9) show that the function F (2) determines uniquely the 

seqUenCe {&I . 

Conversely, the sequence {lk 1 determines uniquely the 

sequence [I , f2, f3 , . ..I of the coefficients of the expansion 

of the function F(.z)EQ which generated the sequence (Zh\. 

Indeed the f, with the highest subscript which appears in equations 

(9) is fk+: and this appears only in the term for s = I . In that term it 

appears with the coefficient 1. Therefore, writing equations (9) successively 

for k=l, k=2,..., we can solve them successively and determine the 

numbers &. Clearly equations (9) cannot yield the coefficient of z in F(Z) 

but this coefficient is known to be 1 because F {z) ED, 
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6. The function L(z). 

Consider the formal expansion : 
h=cb Ir=m 

(10) L(z) = 2 fk (0) Zh -= 2 la-1 9 . 
k=l k=2 

There are two cases according to whether the radius of convergence ,o of 

the series on the right is positive or is zero. 

We note that if F (2) has an analyric iterate F (S , Z) then : 

This results from definitions (4) and (10). Furthermore the function J? (z) 

also satisfies the double functional-digerential equation [4] : 

(11) 

Indeed, differentiating equation (3) over S’ we find : 

dF (s’ , z) 

dS’ 
= l-7, [s ) F (s’ , z)] = F, [(s t s’) , 21 * 

Putting S’ = 0 and noting that, by (6), F (0 , X) = Z, we get the second 

half of equation (I 1). Differentiating equadon (3) over s we find : 

Fs 1s , F (s’ , Z)] = Fs [(s 4 53 , 21 

Putting s = 0 and changing s’ into s we get the first half of equation (11). 

All this holds however only if the function F (z) has an analytic 

iterate. This is not always the case. 

We shall prove two theorems, corresponding to the two possibilities, 

which together will be seen to be equivalent to our Main Theorem. 

1. Two theorems. 

Theorem I. If the radius of convergence of the series 

(10) is p>O then the series defines a function L(Z) and 

permits to construct a uniquely defined function F(s,z) 

satisfying conditions (1) to (4) for jZ!<p(s) with p(s)>0 for 

all finite complex S. This function F(s,z) is then analytic 
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in s and in 2 for all finite complex s and for IzI<,o(s). It is 

the complete complex iterate of F(z) and is also the 

analytic iterate of F(2). 

Theorem II. If the radius of convergence of the series 

in (10) is ,o=O, then the radius of convergence p(s) of the 
k=w 

series 2 f,$(s)s’ is =O for almost all complex s and for 
k=l 

almost all real s. The function F(Z) then does not adm’it 

a complete complex or a complete real iterate. 

As there are only two possibilities, the function Z; (S 1 z) qua function 

of s must either be defined for every finite complex s and be analytic in S, 

or it must exist on 1 y for real values of s belonging to a set of one- 

dimensional measure zero or for complex values of s belonging to a set 

of two-dimensional measure zero, which is our Main Theorem. 

8, Proof of Theorem I. 

We assume that the radius of convergence of the series (10) is ,o >O 

and propose to prove that then there exists a unique function F (S , Z) 

satisfying conditions (1) to (4) and that this function is analytic in S. 

Consider the differential equation 

(12) 
dC L(O 11 i2 + 12 53 + . . . 

dz=L(z)= l~z2f1*z3+.*. . 

This equation has a meaning for IzI , li[ <p but it has a singularity for 

r=c= 0 so that Cauchy’s existence theorem is not directly applicable to 

its solution in the neighborhood of z = 0. Let the first la which is not 

= 0 be II, and put: 

Equation (12) becomes : 

d-I 
1 + (fi t 1)zpr + zp+l-& = 

L (2 + Tip+1 71) 

L (2) ’ 

or : 

dq L (2 + .zp+’ 71) - [; f ($ + 1) zp 7j] L (2) ~ -z 
dz zPfl L (2) 
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A short computation based on Taylor’s theorem shows immediately that 

the right hsnd side is analytic for ~1 = ??o for any finite complex 110 and 

for sufficiently small Z. (Indeed for z such that ]zj <,o and / z + ZJ’+~Q ’ <,o, 

where 90 is any finite complex number). Cauchy’s existence theorem (*) is 

now applicable and shows that the equation in ?I has a unique solution 

satisfying the initial conditions : 

We shall now choose ??o= .$s, where s is another arbitrary finite complex 

constant. 

Equation (12) has therefore a unique solution of the form: 

(13) c = r (s , 2) = 2 f f6+, (0) s.z*+1 + z*+* c’(s ) 2) , 

where E (S , Z) is analytic in z for any s and for / z 1 < E/(S) for some 

p(s) > 0. 

We now want to show that e (S , Z) = F (S , Z) and is analytic in S. 

The proof of this is quite straightforward and elementary but is somewhat 

lengthy as we have to show that each of the conditions (I) to (4) is 

satisfied. 

Condition (2) is satisfied as, by (13), [(s , z) E 61. 

To show that condition (3) is satisfied, consider [(s + S’ , X) and 

c (s’ , Z) . These functions, qua functions of Z, satisfy the equations : 

d6 (s + s’ , 2) = L [C (s + se I z)] 
dZ L (4 

and 

dC (s’ , z) 
a.2 = 

L [r Is’ ,211 
L G9 ' 

with constant s and s’. Whence by division : 

d[ (s + s’ , z) L- [C (s + s’ , 41 =--- 
X (s’ , z) L [i (s’ 1 z)] * 

But this is an equation of type (12), its solutions are: 

i’(s + s’ , 2) = c [s” , b (s’ , z)] , 

* E. Goursat, Cows d’Analyse MathPmatique. Tome 11, pa 347, Paris 1911. 
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with constant s”. It remains to prove that S” = s. This is seen by expanding 

both sides into powers of z by (I 3) and equating the coefficients of XP+‘. 

To prove that condition (4) is satisfied, that is that the coefficients 

of the powers of z are polynomials in S, we proceed by induction. By (13) 

the proposition is true for the coefficients of Z’ with k jfi t 1 . 

Put 

k=m 

c (s , 2) = 2 gk (s) Zk 

k=l 

and carry this expansion into equation (3). Equating the coefficients of z6 

on both sides of (3) we find, assuming all previous coefficients to be 

polynomials : 

go (s + s? = gc (s) + s’ p (s , q , 

where P (S , s') is a polynomial in s and s’. 

Therefore : 

R’b (4 = p (s , 0) 

and g=(s) is also a polynomial in s. 

The function C(S , Z) has thus been shown to be the s-iterate of 

<(L , Z) . It remains to be shown that it is analytic in s and that condition 

(1) is satisfied so that c (1 , 2) = F,(Z). 

For ‘~1 <,o(.F) the function [(s , Z) is the sum of an absolutely 

convergent series of anaiytic functions of s (actually of the polynomials 

zkgk (cp)) . The function c(S , Z) is thus analytic in S and it remains to 

be shown that it is the analytic iterate of i(1 , Z) , 

We shall now show that 

K(s ,z) 
dS 

= L (z) . 
60 

Put 

dt-cs , z! 
dS 

= M (2) . 
, s=o 

By equations (11) we have : 

dC(s , 2) 
ds 

= M [: (s , z)] . 
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By equation (12) we have : 

L (4 * 
d%Cs , 2) 

ds = L [C(S , $1. 

Differentiating this over s we find : 

Putring s = 0 and noting that c (0 , Z) = z [indeed z is a solution of 

equation (12) and is therefore the unique solution when s = 0), we get : 

L (z) . M’ (z) = L’ (2) . M(z) . 

Therefore hil (z) = CL (z) where c is a constant. Using (13) we see that the 

coeficient of ap+’ in M(Z) is f’,+i (0) = &, which is the coefficient of 

zP+~ in L(Z) so that C= 1 and: 

cl,” (s , z) 
ds 

= L (2). 
SC0 

But we have seen that L(Z) can originate in this way from one function 

F (z) only, so that : 

i(l ,z> = F(z). 

and 

C (s , 2) = F (s , x) 

is the complete complex and the analytic iterate of F (2). 

9, Two lemmas. 

To prove Theorem II we need two lemmas. 

Lemma 1 (real case): Let A and B be given positive 

numbers with Bsd. Let $(x) be any polynomial of degree 

n in x with )p(O)/lA* where kzH$l. Then there exists 

an absolute constant c such that the one-dimensional 

measure WI, of the set in real x for which 1x1 (t and 

1 fi (x) j < B” is: 

ct B 
ml 2 - 

A * 
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Proof : We may suppose ‘pt 2 1, for if ‘y1= 0 then ml = 0. 

Choose any ()I + 1) numbers ~1 , ~2, . . . , x,+1. Then by Lagrange’s 

interpolation theorem : 

where 

s(x) == -n (x-q) 
j=l 

and therefore 

S'(Xi) = (Xi - Xi). 

jfi 

We have: 

(14 

Now choose the (1~ t I) numbers X, so that: 

where u is a positive number to be chosen presently. 

If we cannot find (1% + 1) numbers satisfying (15), then all numbers 

x, such that I$ (x,) < B” are confined to, at most, 7% intervals of length 

u 

a-’ 
Thus, in this case : 

If, on the other hand, the (pz + 1) numbers xi can be found to satisfy 

(I 5), then : 

A” 2 1$(O) ) (S(O)/ <W’; ‘-<+ and /$(x6>/ <BA, 
% I 

Moreover we can estimate s’(x,) ( by noting that it takes its smallest vahte 
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when the pi are the closest to each other, that is when 

Xjil 
-xi”L 

tiA 

and then for 

iz fit-1 
I 1 2 . 

Therefore : 

Carrying all these estimates into (14) we get: 

Ak < t*+l . 4 
n 

. B:’ I 
[{ .I1 ] 

A” .- 2 
! 

a” . 

2 

Let ~1 be the upper bound of 2 l/(n+l) then the above 

inequality yields : 

k’(n+l) 2 c,tB, 

because B 2 A and K 2 ?z + 1. 

Choosing cx = ~1 tB we arrive at a contradiction so that there ate no 

(% f 1) numbers xi satisfying (15) for this value of a. Therefore, from (16): 

cl tB 
mj 2 - 

A ’ 

which proves Lemma 1. 

Lemma 2 (complex case): Let A and B be given positive 

numbers with BJA. Let P(X) be a polynomial of degree +z 

in x with I~(o)~>A’ whete kzn+l. Then for all complex 

x there exists an absolute constant C’ such that the two- 

dimensional measure ~2 of the set in complex x for 

which jxi<t and ]$(x)I<B~ is: 
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Proof: As in the proof of Lemma 1 we choose (1% t 1) numbers 

X; but now we demand that these numbers satisfy the conditions : 

where ~1 is a positive number to be determined presently. If we cannot 

find (~2 t 1) such numbers, then all the numbers x for which / fi (x) j<Bk 

are concentrated, at most, in n rings of width 2 and outer radius 2 t, 

so that, in this case : 

Proceeding as in the proof of Lemma 1, we find that if (H f 1) numbers 

X; satisfying (17) exist then : 

Let ~2 be the upper bound of 

inequaiity yields : 

i/in+%> 

I 
, then the above 

(k-n-‘/‘I’ / (n+ %) 

g c,tB, 

as before. 

Choosing fi = ~2 tB we arrive at a contradiction so that there are 

no (n -/- 1) numbers xi satisfying (17) for this value of CX. Therefore, 

from (18): 

which proves Lemma 2. 

* We could replace this inequality by 1 x;+~ -xi 1 > ~/n/l, then by slightly 

longer computation we would obtain m2 < r”tBIA. 
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10. Proof of Theorem II. 

We consider the sequence of polynomials 

1 

Let V&k be the degree in x of fik (x) . If f2 f 0 then, by (6), ?zk 2 h -- 2 

If fz = 0 the degree 7% is still smaller. In all cases k>% f 1 and 

Lemmas 1 and 2 are applicable. As fk (0) - 0 (for k .\ I), we see that : 

$h (0) = f’k (0) (for K 2 2) . 

k=m 

Our assumption is that the series 1 f’k (O)z” diverges for all 
k=2 

zf 0, that is that, for any given /f >0 we have: 

I Pk (0) I > rlk > 

for infinitely many k. 

Let B be any given positive number. Choose an increasing sequence 

of positive numbers A, tending to infinity with 4 and such that 

B<A,<Az<... . It results from our assumption that, given any 4, an 

integer k, can be found such that: 

/ fikl (0) J A? . 

We have to prove that, given B, the one- (or two-) dimensional 

measure +%I {or nz?) of the set in real (or complex) x for which : 

(19) 

is zero. 

It suffices to show this for x <t. Let Sj”L (or S’p’,) denote that set 

in real (or complex) ?L for which ’ $k4 (x) < Bkq. Then, by onr Lemmas : 

If x satisfies inequality (19) then XE .St”jB (or x E S’j”),) for all but 

a finite number of 4, so that: 
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But as A, -Z 00 we have ml (St(B)B) + 0 (or +XZ (S’iT)B) + 0). Thus the 

measure of the sets in x satisfying (20) is zero. 

11. General remarks. 

Lemmas I and II are akin to H. Cartan’s theorem [2] : 

Let h(z) = l$(z-~j) be a polynomial and H>o any 
j=l 

given positive number. Then 

except in .a set covered by, at 
n 

y1 3 r2 , ..* , y, such that 
2 
-r&2H. 

izz1 

everywhere 

most, ‘IZ circles of radius 

Our lemmas can be modified in many ways. In particular in Lemma II 

c”tB 
it is possible to obtain 9~2 s ~ 

c’t?B 

A 
instead of our ~2 5 7. We have 

prefered giving the weaker result, which is sufficient for our purposes, 

because the proof of Lemma II then becomes a repetition of that of Lemma I 

and is shorter. Similarly if we had taken k = 9~ + 1 instead of k 2_ 1~ f 1 

the condition A >B could be discarded. However, we needed the case 

li >n -i- 1 because when fz = 0, the polynomials 

1 
fik (x) = x f k (x) 

are of degree n< k - 1 . 

Our main theorem has been surmised for some time. An attempt to 

prove it, by using a majoracing function, which failed, is described by 

M. Levin [b]. 

To G. Szekeres [7] is due a detailed study of the sJrucrure of iteration 

which may yield further results connected with the problem of analyticity. 

This paper also includes an ample bibliography of the subject. 

The authors have vainly attempted, together with G. Szekeres, to give 

an answer to the following question: 

If F (2) admits iterates in the set .S but has no analytic iterate, can S 

be dense on the real axis (or in the complex plane)? 
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This question is still open. Our Main Theorem only shows that the 

Set s is then of one-dimensional (or two-dimensional) measure 0. The 

only known result in the field is due to I. N. Barker [I] to the effect that, 

for the particular function F (z) = 8” - 1 , the set S on the real axis reduces 

to the set of inregers. 
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