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1. Introduction 

We consider real-valued functions j(z) which are defined for all sufficiently 
large real numbers 2. In discussing the behaviour of such functions as 
z + + co, it is useful to compare f with the functions of some “comparison 
scale”. The early work in this field was due to Du Bois-Reymond (see, for 
example, (2), (3)). This was elaborated by Hardy, (6), who was mainly 
concerned with what he calls the “logarithmico-exponential” scale of func- 
tions. This “scale of Hardy” may be defined as the smallest class S of func- 
tions f with the following properties: 

(i) iffcS,f df d is e ine and continuous for all sufficiently large values 
of x; 

(ii) (a) the function J(X) = CC, where GC is any real constant, is in LX?; 
(b) the function f(z) z x is in &; 

(iii) if f and g are in A? and g is non-zero for all sufficiently large values 
of 2, then 

f/g, exp fJ 1% Id 
are also in X. 

Hardy proved the existence of such a class Z, and showed that every f in &’ 
is monotonic for sufficiently large values of x. He further proved that the 
functions f in A? are differentiable for large x and that f’ ~2. The system%’ 
is essentially the system of elementary functions built up from a finite num- 
ber of operations (+, -, x, +, exp, log) and the functions specified in (ii) 
above r. For a recent account of the system S, from an abstract point of 
view, see Bourbaki (1). 

In recent work (7), some of us required a scale of functions 9’ which had 
some of the properties of 8, but in addition had the property of being maxi- 
mal, i.e. with the property that there is no function f(x) defined for large 
values of x such that, for each g in 9, either f/g -+ 0 or f/g + + CT, as 
x4+00. 

The existence of maximal scales can be proved without difficulty by using 

l For example mx = exp [tz/(l/log z)], and & - z = log [exp (exp [2/(1/lag z)]}/exp z]. 
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Zorn’s lemma (or the axion of choice). The proofs are given in section 3. 
Clearly there will be more than one such maximal system, and the use of 
Zom’s lemma does not allow much control over the properties of the system. 
For example, the condition that 9 is maximal does not imply, either (A) 
that 9 contains functions which tend to + CO more rapidly than any given 
function, or (B) that 9’ contains functions which tend to + 03 more slowly 
than any given function. The problem which gave rise to this paper was that 
of deciding firstly whether a11 maximal scales have properties (A) and (B), 
and secondly whether there exists at least one maximal scale with these 
properties. 

It is clear that the detailed structure of a maximal scale Y will not become 
evident, unless some constructive method is used for its definition. We have 
been unable to obtain such a method without the use of the continuum hypo- 
thesis. However, in sections 5 and 6 we do assume that hypothesis and are 
able to deduce the existence of two maximal scales, one having the properties 
(A) and (B), and the other having neither of these properties. 

In producing the maximal scale, we manage to preserve the conditions 
that, if f and g are in Y, then so is f/g, and that each function in 9’ is ulti- 
mately monotonic. It is this last requirement of monotonicity which causes a 
lot of the difficulties in the argument. In section 4, we extend several of the 
known results about enumerable collections of functions to enable us to add 
single functions to such collections and still preserve the monotonicity 
requirements outhned above. The results of section 4 do not depend on the 
continuum hypothesis, and are of interest in themselves. 

In section 2, we give precise definitions of the ideas outlined in this intro- 
duction, and describe the previous results in the field which are needed in the 
sequel. 

In this paper, we restrict the discussion to the behaviour of real functions 
of the real variable x as 2 approaches infinity. It is clear that, by using the 
terminology of Bourbaki (I), the methods apply to the study of a much wid- 
er class of functions. In particular, precisely the same results are applicable 
to the discussion of the behaviour of real functions J(X) as 2 approaches CI 
(any real constant) from the right or from the left. 

It seems likely that a11 the properties (other than its minimal property) 
of the scale of Hardy could be built into our new scales Y. In the present 
paper, we have not attempted to do this: in particular, the functions of 9’ 
are not restricted to be differentiable. As we proceed, the reader will realize 
that the details of the proof would become extremely formidable if an 
attempt were made to preserve all the properties of 2, 
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2. Definitions, notation, and previous results 

131 

The class of real functions f(x) which are positive and continuous for 
x 2 0 and satisfy 2 f(0) = 1 will be denoted by $7. 

Italic letters e, J, g, t, s, 24, . * * will be used to denote members of 4; i 
denotes the function 

i(x) = 1, for 0 5x 5 1, 
i(x) = x, for x 2 1; 

K denotes the function k(x) s I for x 2 0. The variables x, [ will be restrict- 
ed to non-negative real values. The early part of the Greek alphabet CL, fi, 
y, - - * will denote real numbers: the later part ,u, Y, n, p, (r, t, * * + (apart from 
5) will be reserved for ordinal numbers. 

Two functions f, g in V are said to be e~uivaletit whenever the ratio 
/(x)/g(x) tends to a finite positive limit as x + +co. We then write f d g: 
clearly u is an equivalence relation in the class 59, If f, g in w are such that 

%T-++oo f (4/g@) = 0, we say that f is of smaller order than g at plus infinity 
and write f < g, or g > f. The relation < introduces a partial ordering into %? 
(and, by implication, into the system of equivalence classes determined by 
-). We say that two functions f, g in ‘ip are com$z&Je if 

f<g or fug or f>g; 

and that they are mo%oto&alZy comearable if, in addition, the ratio f(x)/g(x) 
is a monotonic function of x for all sufficiently large values of x. The formula 
f <_ g will mean that either f < g or f y g. The subset of V, consisting of 
functions f which tend to + co as x + +- co, will be denoted V’; the subset, 
consisting of functions f which tend to 0 as x -+ + (~3, will be denoted $9. 

A subset 9’ c 59 is called a scab of fwctions if it has the three properties: 

(Pr) if f, g E 9, then f and g are comparable; 
(P,) the functions K(x) = 1, i(x) = sup (1, Z-C) are in 9’; 
{Pa) if f, g E 9 and CC, fi are real numbers, then f”gJ E 9’ [where 

fTw = (rc4)aIgwT 
The scale Y is said to be a monotone scale if it has the additional property 

(PT) if f, g E Y, then f and g are monotonically comparable. 
In the introduction, we discussed the scale of HardyX. It is clear that the 

functions in&Y need not lie in Q, but those that are ultimately positive can be 
modified for small values of x, without effecting their asymptotic properties, 
to ensure that they do lie in Q. It is clear that, provided the modification has 
been done sufficiently skilfully, this modified set SF* is a monotone scale in 
the sense of our definitions. Our scales 3’ need not have the other properties 

2 The condition f (0) = 1 has been introduced for convenience in proofs; it clearly does not 
affect the behaviour of functions f for large values of z. 



[41 Scales of functions 399 

of &KY*; in particular, we do not require functions f E Y to be differentiable. 
However, we now introduce properties (PJ-(P,) which seem desirable in a 
scale of functions but which are not satisfied by %*. 

(PJ If f, g E 9’ and f # g, then f is not equivalent to g. 

A set 9’ which has the property (P4) is called irredticible. This is not a very 
important property of scales: our main reason for introducing (PJ is that 
proofs of theorems are easier to write out for scales with property (PJ (the 
alternative is to consider the equivalence classes in Y as the elements in a 
new scale 9’). 

(P5) If f E V and f is comparable with each element of 9, then f 
is equivalent to at least one element of 9. 

A scale 9 which has the property (PJ is called a maximal scale. One cannot 
adjoin an essentially different element of Q to a maximal scale 9’ without 
spoiling the property (Pr). 

(P,J If g E %?, there is at least one f in 9 such that f > g. 
(P,) If g E 5%’ and g > K, there is at least one f in 9’ such that 

g>f>.k. 
Note that, since every 9’ satisfies (P3), the property (P& implies that, given 
any g E Q, there exists an fin 9 with f < g. Thus (Ps) expresses formally the 
idea that a scale is extensive in the sense that it contains functions which 
diverge to + co and converge to 0 arbitrarily rapidly, Similarly (P,) implies 
that, if g E V and g < k, there is at least one f in 3’ such that g < f i k, 
This, in turn, implies that, if g in ‘3 and tz, u in 9 are such that lz < g < u, 
then there exist functions f, t in 9 such that h -X f < g < t < U. Thus (P7) 
expresses formally the idea that the scale has a fine structure, in the sense 
that the subset of 9, containing those functions which are asymptotically 
larger than (or smaller than) a given function of V (not necessarily in 9’), 
has no least (or greatest) element. 

A set 9, which has the properties (Ps) and (P,), will be said to be dense. 
At first sight, one is tempted to think that the properties (PI) and (P7) 
might be a consequence of (P5). With the use of the continuum hypothesis, 
we show, (i) in section 5, that there exist monotone scales with properties 
(P&[P,), and, (ii) in section 6, that there exist monotone scales with 
properties (PJ and (P5) but for which (P&, (P,) are false, Since the contin- 
uum hypothesis is known to be not inconsistent with the usual axioms of 
mathematics, this shows that it is impossible to prove that a scale which is 
maximal must also be dense. One can similarly show that (P,) and (P,) are 
independent of each other. 

In the sequel we shall need 

LEMMA 1. Given a sequence of fwctiorts fl < fz < f3 < - + * < f, < * * - in 
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V, there exists a function f in %T such that f > f, for each positive integer n. 
This is due to du Bois-Reymond (2). The proof is simple: take f(x) = 

1 + &, (x - r)f&). 

LEMMA 2. (i) Given a sequence of functions fi < fz < f, < * * * < f, i * * *, 
and II: function f in. % such that f,, 4 f for each integer n, there exists a function 
g in Q such that f,, < g 4 f for each knteger ‘yt. 

(ii) Given a sequetice of functions fi > fi > f3 > . * . > f,, > * - ., and a 
fumtion f in V such that f, > f f OY each i&eger n, there exists a fuwctios gin V 
such that f, > g > f for each integer FL 

This is due to Hadamard (4). 

LEMiK4 3. If L? is any partially ordered set, then there is a maximal subset 
4 c 2 which is simply ordered (i.e. U& is not a proper subset of any sz’mply 
ordered 4’ c 9). 

This is the form we need of the celebrated Zorn’s lemma which is known 
to be equivalent to the axiom of choice or the well ordering principle. 

3. Existence of maximal scales 

The main result of this section is 

THEOREM 1. There exists a scale of functions 9, which is irreducible and 
maximal. 

To prove the theorem, we have to show the existence of a subset 9’ c ‘%I 
with the properties (PI)-(P5). Let Y denote the collection of those subsets 
% c V which have the four properties (PI)--(PJ. Then F is not empty, 
since the class ??2 of all functions of the form (i(z))“, for real u, is a member 
of Y. Further, Y is partially ordered by the relation of inclusion, i.e. we say 
that @r 2 S2 if %r c e2. Use lemma 3 (Zorn’s lemma) to obtain a system 
V c Y which is simply ordered and maximal, in the sense that it is impos- 
sible to add a further class G2 E (Y - V) to 7c/‘ and preserve the simple 
ordering. Now put Y = ue c ,+- @. By using the fact that, if 6,, ‘S2 E V 
then either C&r c 6, or 9YS c %r, it is easy to verify that the subset 9’ t V 
has the properties (PJ-(P,). It only remains to show that Y is maximal 
in the sense that it has property (P5). 

If Y does not satisfy (P&, there is a function t in 59 which is comparable 
with every f in 9’ but not equivalent to any f in 9’. Let 9((t) be the subset 
of V consisting of those elements of the form t”f where tc is any real number 
and f E 9. The set Y(t) clearly has properties (PJ and (PJ. Consider any 
two different functions t”fi, tafz in 9(t). If ct = p the functions are compar- 
able but not equivalent, while if a # 8, we have 

t”fl tBf, = [tfy-dl) f;/wq8-a 

= [t/f3]fi-a, for some f3 in 9, 
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and again the functions t”fi, tBfa are comparable but not equivalent. Hence 
Y(t) has properties (PJ and (PJ. Consequently 9(t) E F and contains as a 
proper subset every set of the system V. This contradicts the definition of Y, 
and proves that Y must satisfy (PJ. This completes the proof of the theorem. 

It is clear that the method of proof of theorem 1 can be applied to mono- 
tone irreducible scales, that is, sets 9’ c ‘3 which satisfy {P:) and (PJ-(P,). 
This leads to the idea of a maximal monotone scale, defined as a set 9 with 
the properties (PT), (PJ, (PJ and in addition: 

(PT) if f E 59 and f is monotonically comparable with each element 
of Y, then f is equivalent to some element of 9’. 

Thus we can obtain 

THEOREM 1A. There exists a maximal monotone scale of functions which is 
irreducible. 

It should be noted that (Pi) ’ IS weaker than (PJ when applied to scales 
satisfying (PT). 0 ne of the objectives of this paper is to show the existence 
of scales 9 satisfying (P,*) and (P,)-{P,). It does not seem that Zorn’s 
lemma can achieve this end because, when more stringent conditions are 
imposed, maximality in the sense of Zorn’s lemma becomes weaker 3. There 
is an additional reason why we cannot use Zom’s lemma to obtain scales 
with properties (P,) and (P,) : the real difficulty here is to show the existence 
of one such scale. This explains why, in the rest of the paper, we need to use 
more constructive methods. 

4. Adding a single function 

The results of lemmas 1, 2 refer to enumerable sets of functions of g 
which satisfy (PJ. The first step is to modify these so that, when (Pf) is 
true, it remains true of the set enlarged by the addition of a new function 
(the latter chosen to satisfy additional requirements). We shall need the 
following rather special lemma which does not seem to follow easily from 
known results: 

LEMMA 4. Let f, g, h be functioks of $9 satisfying f < g, f < h and such that 
f and g are monotonically comparable; the% there are functions I and zl of % 
which al*e monotonically comparable with f and g and satisfy 

f-X:l<g<u, f<l<h<% 

PROOF. The function u defined by 

h(8 
u(x) = (1 + 4&)o~~z m* for all x 2 0, 

8 For example it is possible to demand that the ratio f/g for any two functions f, g E 9 be 
monotonic for all rc 2 0. In this case maximality becomes very weak indeed, and Mr. A. Beck 
has pointed out to us that there is a countable cofinal sequence for any such scale. 
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clearly satisfies the required conditions. To obtain I, we first define a func- 
tion by 

v(x) = r/(x) inf - 
522 fO) ’ 

for 2 2 0, 

where 

It is clear that v(x) is continuous, that 

(1) v(x) =( yh.(x), for all x > 0, 

and that f < V, while v/f tends monotonically to + co. Now define a function 
I by the reIation 

Then 

By (1) it follows that I + h. Further, 

and infosgsx v (5) /g(l) does not exceed 1, and is monotonic decreasing while 
/@)/g(x) decreases monotonically for x 2 X0, and tends to zero as x +CQ. 
Hence 2 < g and I, g are monotonically comparable. It only remains to 
prove that I > f and that I, f are monotonically comparable. 

Let X, be any fixed real number such that g(z) 2 f(x) for z 2 X, and 
g(z)/f(z) is monotonic increasing for x _S X1. Let X satisfy X, =( X 5 z. 
Then 

Since both f < g and f < v, if we let X + -+- co slowly enough as x -+ + co, 
we have I > f. 

Suppose, if possible, that Z(z)/f( z is not monotonic for z 2 X,. Let x1, x2 ) 
be such that X, s x1 < x2 and 
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Then, by (2), we would have 

Since 

this implies that 

Hence for some &, with x1 < &, 5 x2, we have 

Thus 

Since v(x)]f( x IS monotonic increasing for all 2, this is a contradiction which ) . 
establishes that Z(x)//{ CC is monotonic for x 2 X,. This completes the proof ) 
of the lemma. 

LEMMA 5. S@$ose thut 22 is a countable subset of %? such that any two 
ficrtctiorcs of d are monotonically com$aqable and that a function f of V is com- 
parable with each ekmem? of 2 The% there exists a f#+xtio7z g in V, with f < g, 
which is monotortically comparable with each element of 2, and which satisfies 

g<!l 
for every q in 9 with f < q. 

PROOF. Let ql, q2; * ’ be any enumeration of the functions of 9. Let 
$+ denote the set of functions q of 9 with f < q and let 3?- denote the set of 
functions q of 3 with q < f. We consider separately the three cases when: 

(i) .9+ contains elements but contains no minimal element 4; 

4 A function q,, is said to be a minimal element of .9+ if every element (I of J+ other than q. 
satisfies qO 5 q. 
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(ii) $+ contains a minimal element; 

(iii) $+ is empty. 

(i) In this case, we can choose a sequence or, v~, * . * of elements of d+ 
such that z1i > V, > vg > . . . and such that each p in 9+ satisfies 4 > V, for 
all sufficiently large r. We define inductively a sequence of real numbers 
{CC?} and a sequence of functions {So] by the conditions: 

6) (3) a1 = 0, and sr (x) = s(x) for z 2 0; 

(ii) for I = 1, 2, u * 6, if u7, s, are known we take p~~+r to be large 
enough to ensure that 

(4) a,+1 > a7 + 1, 

(5) that s,(x) > v~+~(x) > Y/(X) for x L x~+~, 

P-V that the ratio v,+,(x)/v~(x) is monotonic for z L or,.,,, 

(7) and that the ratios ~~+r(x)/~~,(x), s = 1, 2, * a *, r, are 
all monotonic for x 1 a,,,; and 

(iii) we define s,.+i(z) by 

s,+~(x) = s,(x) for 0 5 5 5 ~t,+r, 
P> ( 

s,,, (4 = v$+:i, f4+Jxl for cc,+1 5 x. 

It is easy to check that this inductive definition can be carried out; the 
fact that s,(x) satisfies (8) with P + 1 replaced by Y ensures that M,+~ can 
be chosen to satisfy the condition (5). 

Now put g(x) = lim,, c s [x). Note that for any fixed x, we have 

(9) s,(x) = s,+l (x) = s,+z {x) = - * - 

provided a++, 2 x. It follows from (6) and (8) that g < ZI, for each integer ‘Y, 
and therefore g < p for all 9 E 9 +. The conditions (5) and (8) ensure that 
f 4 g, while (7) and (8) ensure that g is monotonically comparable with each 
element of 3. Thus g has the required properties. 

(ii) Now suppose that 9+ contains at least one minimal element. Let d 
be the equivalence class of minimal elements of A’+. If the number of ele- 
ments in d is finite, then d will contain an element q+ such that q+ (x)/q (x) is 
monotonic decreasing for sufficiently large x for each 4 in ~5’ other than q+. 
If d is infinite and does not contain an element Q+ with this property, we 
must first adjoin such an element to ~9, taking care that the new element is 
monotonically comparable with the rest of 3. 

Without loss of generality, we may assume that d is such that, if qt, qr 
are two elements in b, the ratio qd(x)/qi( x +lasx++co.Ifthereisno ) 
element p, with the required property, then there must be a sequence 
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t&), &(x), * * -j t,(x)> - * - of functions of d such that, for K = 1, 2, 9 - -, 

t,+,(x) > tk(x) for sufficiently large x, 

and for any 4 in b, &(x)/~(x), f or some integer R, is monotonic decreasing 
for large enough x. We define inductively a sequence of real numbers {/I,} 
and a sequence of functions (sr> by the conditions 

(i) & = 1, sI(z) = ti(x) for x 2 0; 

(ii) for y = 1, 2, - * *, if r6,, s, are known we take ,!?,+1 to be large 
enough to ensure that 

PO) A+1 > Br + 1; 

that the ratio tr+l(x)/t,(x) is monotonic and satisfies 

(11) 
4+i (xl 

l+f>- 
4 64 

> 1 for x 1 /$+, 

(12) and the ratios t,+,(x)/q&x), s = 1, 2, - - *, T are mono- 
tonic for x 2 /$+r; and 

(iii) we define ~,+~(x) by 

Now put q+(x) = lim r++oc s,(x). The conditions (11) and (13) ensure that 
q+ is equivalent to each element of 8, and that q+/q is ultimately monotonic 
decreasing for each q in 8, tending to the finite positive limit 

O” W,,l) 
rr 
9=1 Ll(A,,) * 

Conditions (12) and (13) ensure that q+ is monotonically comparable with 
every element of 2. 

Thus we may assume that there is a function q+. in 2?+ with the property 

that 9+ (x)/q ( x is monotonic decreasing for sufficiently large x for every ) 
q in 52+ other than q+, 

There are now three possibilities to consider: 

(a) 2?- is empty, 
(b) 2?- is not empty and contains no element q- such that q-/q is 

ultimately monotonic increasing for each gin 2?- other than q-, 
(c) 2?- is not empty and contains an element q- such that q-/q is 

ultimately monotonic increasing for every q in 2!- other than 

4-a 
(a) Let g(z) be defined by 
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Since f i q+, the function 

inf 57+0)/f lt> 
E2z 

is monotonic increasing, and diverges to + co. Consequently g and q+ are 
monotonicaly comparable and g < q+. Hence g is monotonically comparable 
with each function 4 of 9. Further, since 

we deduce that f < g, as required, 
(b) If 22- contains no maximal element, we use the argument of (i) to 

adjoin an element q- which is monotonically comparable with the elements 
of 22 and satisfies f > q- > g for each p in 9-. On the other hand, if 2?- con- 
tains a class $9 of maximal elements, we can use a similar argument to that 
used in obtaining q+ from the class b, to obtain a function p- with the prop- 
erty that q-‘-/q is ultimately monotonic increasing for every p in 2?- other 
than g-. This reduces case (b) to case (c). 

(c) We have now got the situation q- 5 f < Q+ and g-, q+ are monotoni- 
cally comparable. Apply lemma 4 to obtain a function g, which is monotoni- 
cally comparable with q- and g,, and which satisfies q- < g i Q+, f i g < q+. 
Clearly this function g satisfies all the conditions of the lemma. 

(iii) We have now only to consider the case where 2?+ is empty. If 2?- is 
also empty, we may take g = if. As in case (ii) (b), we may assume that, 
if 2- is not empty, then there is a function q- such that q-/q is ultimately 
monotonic increasing for every 4 in d- other than q-. It now clearly suffices 
to take 

g(x) = i(x)q-(x)~~~#~~)/s-o)}. 

for all z 2 0. This completes the proof. 

COROLLARY. Szc@ose that f and 22 satisfy the conditions of lemma 5. Then 
there exists a fu+zctiolz g iw %? which is morzotonnically comfiarable with each 
e&metit of 2 and satisfies f > g > q for every q ill 2 with d < f. 

PROOF. Let f’ = K/f and q’ = k/q for each q E 22 and apply lemma 5 to f’ 
and the set 22’ of all the functions q’. 

~&T&IA 6. Sa@@se t, u, f E V and are such that t < f < u, and t, ak dye 

mortotomkally com?arable: thert there exists an s in %’ which is monotortically 
com.$arable with t and u, and which satisfies neither f i s, nor f > s. 

PROOF. We define a sequence of real numbers (,!$) and a sequence of 
functions {sc} by the following inductive process: 
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(i) #?1 = 0, ~~(5) = 24 (cc) for z 1 0; 

(ii) if &, A, * * -, L1; sl, s2, * . a, s+~ have been defined we first 
choose ,&,. so that 

(14) Bzr > Ar-1 f 1 

and 

(15) %-1 (I%) > f&J ; 

then define szr(x) by 

(iii) If pi, &, * . ., /J,,; si, s2, * * *, s2? have been defined, we first 
choose &+l greater than ,!& and such that 

(1’) %t(f%r+1) I f(IBzl+l)~ 
then define s~~+~(x) by 

(18) 
( 

ssrfl(~) = s,,(x), if 0 < it: 52 ATfl, 

sZr+l (~1 = z(t+J’ u(x), if I%+~ S 2. 
c 

Finally, put S(X) = limwrx, s,.(z). Note that (9) is again true. It follows 
that s(x) is continuous for all x, and (E), (17) together imply that, for each 
integer r, there exists f, satisfying & < & < ,k?,+i and .s(&) = .s~+~(&) = 

f(L)* BY (14)) A --f co as Y -+ co and therefore neither f > s, nor f < s can 
be true. The conditions (16) and (18) imply that s is monotonically compar- 
able with t and zt. 

REMARK. It is clear that the function s defined above must satisfy 
tis<u. 

We now prove a result which seems to be of some interest in itself. 

THEOREM 2. If F is a cotintable set of functions of ‘i4 any two of which are 
monotonically comfiarable, and if f is iti Q alzd is comparable with each element 
of 9, then there exists a function g of %?, which is monotonically com$arable 
with each elemerzt of T, bat which satisfies tineither g < f PEOY g > f. 

PROOF. We may clearly suppose that no function of Y is equivalent to f. 
Let 2?,3Z’ be the subsets of 5 such that t < f, t > f respectively for tin -2,&J?. 
Suppose first that at least one of 22, 9%’ is empty, say 9’. Then t < f for all 
t E T. Let u in V be such that u is monotonically comparable with t and 
t < u i f for all t E Y (a exists by lemma 5). Put 
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Then g(z) 2 f(z) for all z and there is a sequence {&} of real numbers such 
that E, + co as 1z + co and g(&) = f(&J. S ince g(z) /a (z) is monotonic for 
all x, it follows that g satisfies the requirements of the theorem. 

On the other hand, suppose that neither of 9, W are empty. By lemma 5 
we can find functions u, ‘u which are monotonically comparable with each 
element of F, satisfy 21 < f < v and are such that t < zc, t > v respectively 
for elements t in 3, 9%‘. Now apply lemma 6 to obtain a function g which is 
monotonically comparable with U, v and satisfies neither g > f nor g < f. 
This function g is clearly monotonically comparable with each element of F. 
This completes the proof of the theorem. 

The result of theorem 2 allows us to strengthen lemmas 1 and 2, to the case 
where the functions are monotonically comparable. 

LEMMA 7. If ZT is u countable set of fun&Otis of $7, any two of which are 
monotonically cornpayable, there is a function u irt b: which is monotonically 
cornpaYable with each element of F avzd satisfies t < u for each t in F. 

LEMMA 8. If F is a cozcntable set of ftinctions of V, any two of which are 
monotonically comparable, arcd t,, in F is such that t, < t for each t in 9 other 
than to, there is a ftinction u in V which is monotonically comparable with each 
fitnctioti of 9 and satisfies to < ti < t for each t in J!T other than. to. 

PROOF OF LEMMA 7. If F contains a maximal element m, such that, for 
every t E F, t < m, then we use the argument of lemma 5 to adjoin a new 
element m, to 7, such that m, is equivalent to all such elements m, and 
m,,/t is ultimately monotonic increasing for every t in Y other than wO. It 
then suffices to take U(X) = i (x)mo@). 

On the other hand, if T has no maximal element, then there exists a 
sequence t, < t, < - - - < t, < f - - of functions of F such that, for each 
t E F, t < t, for sufficiently large integers 7. Apply lemma I to obtain a 
function f in Q such that f > t, for each integer R. Then f > t for each t E F. 
Apply theorem 2 to obtain a function Z.J which is monotonically comparable 
with each t E F and satisfies neither ti < f nor ti > f. It is clear that u > t 
for each t ET. 

PROOF OF LEMMA 8. This is just a special case of lemma 5 for which f = to. 
Our next object is to extend Theorem 2 and lemmas 7, 8 to the case where 

9 need not be enumerable, but has an enumerable basis. Suppose Y c G? 
is any set of functions and ~9 c F: then we say that 39 forms a basis for 9 
if every element in .F can be written as a finite product of real powers of 
elements in ~3. The set 9 has a countable basis if there is some countable 33 
which forms a basis for F, We need two additional lemmas. 

LEMMA 9. If CT is an irreducible scale which has a countable basis, there is a 
sequence t,, t,, - - -, t,, - - - of elements F such that t, > k and, for any t in Y 
with t > k, there aYe integers Y, s with k -c: t, < t < t,. 
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PROOF. Let e,, e2, * . *, e,, * - * be a basis for .F chosen so that e, > K for 
each integer Y. We suppose, without any loss of generality, that the basis is 
such that its elements are independent in the sense that 

,+,Q . . -e>(z)+p, as z-++co, O<p< +oo, 

holds only when cc1 = 01~ = . * - = c(, = 0. 
Let FP be the set of functions which can be written in the form 

t=+@a.-.+ 

for some real numbers al, as, * * *, a,. Since the elements e,, e2, * * a, e, are 
independent, there is a (1, 1) correspondence between the points (aI, a2, * - -, 
ar) of Euclidean r-space and the functions 

t=e(al,a,;--,a,) =+ep---ep 

of FT. 
Since F is completely ordered by the relation <, the correspondence in- 

duces a total ordering in r-dimensional space. Let this ordering be denoted 
by the same symbol and let E- be the set of points (al, CQ, * . ., x,) such that 

( al, as, * * -a a,) < (0, 0, * - -, 0); 

E+ be the set of points (c(r, aZ, . * ., a*) such that 

(al, az, - * *, a,) > (0, 0, * * *, 0). 

E- u E, forms the whole of r-dimensional space apart from (0, 0, m * *, 0). 
It is easy to verify that E-, E, must be convex sets in r-space. It follows, 
without difficulty, that E, can be represented as a union E, = ull Hi, 
where H, is an open i-dimensional half space, lying in the bounding hyper- 
plane of Hi+l when i < Y, and bounded by an (Y - I)-dimensional hyper- 
plane passing through the origin. 

Now take an enumerable set of points (&I”‘, ag), * * *, @I) which is dense 
in both H, and H, and put 

tp) = e(e), ~$1, - - a, a:‘), ry1 2 1, 2, * - -. 

If t E FT and t > k, there will be integers m, p, for which 

k i tCm) < t < t@‘) T T . 
If we now reorder the elements tr), n = 1, 2, * * *, r = 1, 2, . * * in a single 

sequence tr, t,, . . . of elements of F, we have satisfied the conditions of the 
lemma since 9 = u,“=i FT. 

LEMMA 10. If 9 is an irreducible scale which has a countable basis, and f 
ire V is comparable with each element of 9, then there is a seque?%ce sl, s2, - - *, 
S . . . of elemevcts of 9’ stich that (i), if s E 27 and s > f, there is an Szteger r 
.slch that s > s, > f, alzd (ii), if s a 9’ and s i f, there is an integer 15 s%ch that 
s < s, < f. 
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PROOF. If f is equivalent to an element f’ in .4”, the result follows im- 
mediately on applying lemma 9 to the function s/f’ or f’/s in cases (i) and (ii). 
Therefore, we may assume that f is not equivalent to any element in Y. 

We now modify the method of proof used in lemma 9. Let e,, e2, * * ‘ be an 
independent basis for the set Y. Let Y7 be the set of elements of Y which 
can be represented in the form 

s = e,&1e? - - - Q, 

where cll, CC~, * - *, a, are real numbers. We divide the points (~(r, CQ, * * *, E,.) 
of r-dimensional space into two sets E- and E+, putting (cc,, tlz, * * ., cc?) in 
E-, if e (c(r, Q, * * *, a,) < f, and in E+, if e(c.c,, ccz, * * *, IX,) > f. 

The two sets E- and E+ constitute a convex partition of space into two 
disjoint sets. If one of these sets, say E:f, is empty, it is sufficient to take for 
s;l’, $4 . * ., ,w . * - any set of functions corresponding to a dense set of 
point7s ic$), a!): - 4 *, .@I) fl = 1, 2 * * * in r-dimensional space. If both the 
sets E-, E+ are non-empty, we proceed as follows. Let H,-, be the (1 - l)- 
dimensional hyperplane separating E- and E+. Let EL, = E- n Hp-l3 
EzmL, = Ef n H,-,. If each of these sets is non-empty, let H,-, be the (r - 2)- 
dimensional hyperplane separating E,,, E7+-1; and put 

E,, = E- n Hz-2, E;& = E-t n H,+ 

If each of the sets E;+, EC, (7n 2 2) is not empty, let Hr-m-1 be the 
(r - PZ - I)-dimensional hyperplane separating them, and put 

E,,-, = E- n If-m--l, Ef.-, = E’ n HTemml. 

In this way, we obtain inductively sets 

(19) 
E, c E,, = . . . c E,, = E- 

E; c ELI c . * * c E$-, = E+ 

where ;t, 1 0 is an integer, one of the sets E;, Ez is empty and none of the 
sets EzF+~, * . a, E,,, Ez+;,,, * . - Ez-, is empty. Now Iet (RF), c$), . . a, cc?‘) 
m = 1, 2, * * * be a set of points in r-space which is dense in each of the sets 
(19); and put s:) = e(@), c@, * . *, CC:)). It is easy to see that, if s t f and 
s 6 YT, then there is an integer m for which s > sLfi) t f, while, if s + f and 
s E YP, then there is an integer fi for which s < SF) -C f. 

Finally, rearrange the functions .$), n. = 1, 2, . = a, Y = 1, 2, . * . as a single 
sequence sl, s2, = * a, and it follows that this sequence has the desired prop- 
erties. 

REMARK. The method of proof used in lemmas 9 and 10 can be extended 
to prove the folIowing more general result: 

THEOREM. If Y is an. irreducible scale which has a countable basis, and 
LT is any slubset of 9, the-12 there is a sequence t,, t,, * * ‘, t,, . . - of elements of 5 
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such that, for every t E F, there are Megers Y and s such that 

We omit the proof since this theorem is not needed in the sequel. 
The next theorem is an extension of lemmas 1 and 2. 

THEOREM 3. If 9 is an irreducible scale with a countable basis, there are 
functions f, g which are comparable with each element of Y and satisfy 

g > s > I/g fey every s E 9, 

if s E Y atid s > k, then s > f > k, 
if s E 9 and s < k, thea s < 1/f < k. 

If, in additioti, any two elements of Y are monotonically comparable, then 
f, g can be chosen to be monotonically com$arable with each element of 9. 

PROOF. Let si, s2, - . - be a sequence of elements of Y satisfying the 
conditions of lemma 9. Apply lemma 1 to obtain a function g satisfying 

g > s, for each integer rt, 

and apply lemma 2 to obtain a function f satisfying 

s, > f > k for each integer “rz. 

It follows immediately that the functions f, g have the required properties. 
If Y is such that its elements are monotonically comparable, the result 

follows by using lemmas 7 and 8 instead of 1 and 2, 

REMARK. This theorem shows clearly that a scale which has a countable 
basis cannot have any of the properties (PJ, (P6) of (P,). 

The next theorem is an extension of theorem 2 and will be important in 
the sequel. 

THEOREM 4. If 9 is an irreducible scale, any two of whose elements are 
monotonically comfiarable, Y has u countable basis, and f E Q is comparable 
with each element of 9; then there is an element g E V which is monotonically 
comparable with each element of 9, but which satisfies Beither g > f SOY g -c: f. 

PROOF. Apply lemma 10 to obtain a sequence of functions si, s2,. . ., s,, . . . 
in 9 with the properties stated. Let this sequence form the countable 
set F, and apply theorem 2 to obtain a function g E V which is monotonically 
comparable with each element of F but satisfies neither g > f nor g 4 f. 
If s is any element of Y and s > f, it follows that there is an integer n such 
that s > s, > f. Since s, is comparable with g, we must have s > s, > g, and 
therefore g is monotonically comparable with s. Similarly, when s < f, g is 
also monotonically comparable with s. This completes the proof of the 
theorem. 
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5. The existence of a maximal dense scale 

In this section and the following, we have been forced to make use of the 
continuum hypothesis. Since a continuous function is determined by the 
values it takes on the rationals, the set V has the power 2Ko of the continuum. 
We suppose the subset %I?’ of the functions of V, which tend to -I- co as x 
tends to + 00, is well-ordered in a transfinite sequence 

fi.. fi, * - ‘, fp, * * *I p -=c Q, 
where D is the first ordinal of power greater than &. Then to each ordinal p 
with cardinal less than 2Ko, there will be a corresponding function f, E Q”; 
and the functions f, exhaust V”, as ,U runs through each such ordinal. We 
suppose, as we may, that the well-ordering is chosen so that fl = i. We give 
an inductive definition for a scale Y, for each ordinal ,u < D and finally 
take Y = v@,n 9,. 

First let PI be the scale of functions i” for ah real 0~. It is clear that YI 
has the properties (P;“), (P,)-[P,), and 9, has a countable basis. 

Now suppose that t < 0, and that scales 9, have been defined for ,u < t 
with the following properties: 

(20) for ,u < z, Y, has properties (Pf), (P2)-(P4); 

(21) for ,U < t, 9, has a countable basis; 

(22) for ,u < z, there are functions s, t in 9, such that 
k<sif,<t; 

(23) for ,U -C z, there is a function g E 9, such that neither 

g > f, nor g < f,; 
(24) for 1 Y&LL<v<~, Ypc 9,. 

The conditions (20)-(24) are clearly satisfied when t = 2. Our object is 
to show that 9, can be defined so that the conditions are satisfied with r 
replaced by (-c + 1). 

Let 
3-7=vvp, 25Tz(D. 

PCS 
By the continuum hypothesis, Y, is an enumerable union of scales each 
with a countable basis, and so Y7 itself has a countable basis. 

If there is an element tin Y7 such that t > f,, we put 3-i = Y,; otherwise 
we aim to form a scale Y-i, from Y,, by adjoining a suitable element to 9,. 
By theorem 3, there exists a function g, which is monotonically comparable 
with each element of Y* and satisfies g > t for every t E Y7. By lemma 4 
(with f = k), there is a function IV which is monotonically comparable with 
g (and therefore with each element of 9”,) and satisfies 

24 > g, 54 > f,* 
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It follows that the set of functions of the form @t, where Q is real and 
t E Y,, is a scale, with properties (Pr), (Pa)-(P,), which has a countable 
basis. We define 9-i to be this new scale. 

If there is an element s in r: such that 

k < s < f,, 
we put Y:’ = Y:; otherwise we aim to form Yy, from Y-L, by adjoining 
such an element to it. By applying theorem 3 to 9-i, we can find a function 
/a E %‘, which is monotonically comparable to each element of Y:, and satisfies 

k<h<t fortinY-:nVm. 

By lemma 4, there is a function I which is monotonically comparable with 
k and h (and therefore with each element of 7:) and satisfies k < 2 < F, and 
I < f,. We now define Y:’ to be the set of functions of the form I”& where u 
is real, and t E 9-i. Then 9-y is a scale with the properties (PT), (Pa)-(P,) 
and has a countable basis. 

Now, it may happen that there is an element g E 3-y) such that neither 
g > f, nor g < f,. In this case we put 9-r’ = 9:; otherwise we again form 
a new scale by adjoining a suitable element to 5-y. Clearly f, must be com- 
parable with each element of 9”:, so we can apply theorem 4 to obtain the 
required g. Finally, we let 9:’ be the set of all functions of the form g”t 
where cc is real and t t Yr. 

Define YIjp7 = Y:,‘. If t is replaced by (r + l), it is clear that each of con- 
ditions (20)-(23) is satisfied. The condition (24) is immediate since 9, = 
Jr’,, 3 CJ-‘, I> Jr’ 7 3 T7 3 9, for all p < t. 

by the ‘wording of the conditions (20)-(24), it makes no difference to 
the construction of Y, whether t has an immediate predecessor or is a limit 
ordinal. Thus, by induction, 9, is defined for all p < 9. 

If 9 = up<0 9,, it is immediate that 9’ has the properties (P,*), 
(P,)-(P,); but, naturally, 9’ will not have a countable basis. We now show 
that 9 also has the properties (P&-(P,). If f E V, then f’ = max (f, i) E $P’ 
and therefore f’ = fp, for some ordinal ,U < Q. Hence there is an element 
s E LG@~, such that s > f’ and therefore s > f, Since s E 9, this proves that 9’ 
has property (Ps). Now suppose g E V”; then g = f,, for some ordinal 
TV < ~9. There exists s in 9, with k < s i g. Since s E 9, this proves that 9’ 
has property {P,). 

Finally, suppose f in Q is comparable with each element of 9. Then, 
since k E 9, either f is equivalent to k, or f E %?‘” or f E V”. Thus, there is an 
ordinal v < LJ such that either f = fY or l/f = f,. There is an element s < 9, 
such that neither s > f, nor s < f,. Hence, either s or l/s, both of which are 
elements of 9, is equivalent to f. This proves that the scale 9 has the prop- 
erty (PJ; i.e. it is maximal. 

Thus we have proved 
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THEOREM 5. (&sum&g the conti~~~rn hypothesis). There is an irredztcible 
scale 9 which is muximal and devtse and for which arty two elements are mono- 
tonically comparable. 

REMARK. It is perhaps worth asking whether anything like theorem 5 
can be proved without using the continuum hypothesis. In fact the same 
methods work, if we redefine properties (P5), (PC), (P7) relative to a subset 
J&C%“, for which we know that the power of&is gl, where H, is the smallest 
cardinal greater than K,. Thus we say that a scale Sp is maximal relative to SS’ 
if it has property: (P5&) if f E &’ and is comparable with each element of 9, 
then f is equivalent to some element of 9. 

We say that a scale Y is dense in &, if it has properties (P,&) and (P,&) 
obtained by making similar modifications to (P,) and (P,)- The method 
used to prove theorem 5 then gives, without using the continuum hypothesis: 

THEOREM 5&. Let J%’ be any subset of 55’ of cardinal K,. Then there is aa 
irreducible scale Y which is maximal relative to d, alzd dense in ya2, and for 
which aPzy two elements are molzotonically comparable. 

6. Existence of a scale which is maximal but not dense 

In this section, we again need to use the continuum hypothesis, but we 
modify the method of construction of theorem 5, so that the scale 3’ ob- 
tained has neither of the properties (P6) or (P,), though the other properties 
are preserved. The idea behind our construction is to ensure, (i) that every 
function in 27 has, for some arbitrarily large values of x, values which are 
not too large; (ii) that every function in Y n %? has, for some arbitrarily 
large values of x, values which are not too small. 

Thus we say that two functions f, g in V are exponentially similar, if they 
are monotonically comparable and, in addition 

lim inf {x-l/log f(x) - log g(x)l) = 0. 
z++m 

A subset d c V is said to have the property (PB) if any two of its elements 
are exponentially similar. We say that two functions f, g E %? are Zogarith- 
mically diifferent, if they are monotonically comparable and, in addition 

lim sup logfk4 -l%dX) = +ao 
z-&m log log x 

A subset d c V is said to have the property (Pg) if any two of its elements, 
which are not equivalent, are logarithmically different. A subset 8 c %? is 
said to be a restricted set of functions if it has both the properties (Pa) and (P,). 

Our object is to obtain a scale 9 which has the properties (P:), (P,)-(P,) 
and (Ps), (P,). Such a scale will have neither of the properties (PJ, (P,). 
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In the first place take f(x) = ex x. Then no function f of Y which is p 
exponentially similar to the function li of 9 can satisfy g > f. Hence Y has 
not got property (P,J. Secondly, take 

f(x) = 1, for 0 5 x 5 e, 

f(x) = log x, for e 5 5. 

Then f > R, but there is no function g in V which is logarithmically different 
from K, and satisfies f > g > K. Hence 9’ has not got property {P,). 

To obtain a scale 9’ which is maximal, and at the same time a restricted 
set, it is necessary to modify some of the methods and results of section 4. 
We will state the results and sketch the arguments at those points where 
care is needed. 

In section 4, we made repeated use of the fact that, if f, g, h are in Q and 
f < g < h, and, if f and g are monotonically comparable and g and k are 
monotonically comparable, then f and h are monotonically comparable. 
The new situation is rather more complicated; the most useful results are 
summarised in the following lemma. 

LEMMA 11. Let f, g, h be monotortically com+arable functiorcs of V satisfy&g 

f<g<h. 
If f and h are ex$onentiaUy similar, then so are f and g, aad g and h. If f and g 
OY g a%d h are logarithmically different thert so are f and h. 

Lemma 5 obviously has to be weakened slightly in its new form. It remains 
strong enough for our purposes. 

LEMMA 5A. .%@bose 22 is cozlntable and forms a restricted set of functions 
of ‘27, and f is comparable with every function ~PZ A?, and there is at least one q of .S! 
with q > f. Then either [a) there exists a fz.mctiolz q+ of 22 szGch that f < q+ < q, 
for every q in 9, other thax q+, which satisfies q > f; or (b) there exists a func- 
tio+z g E $9 such that the set 2 v {g) is a restricted set and f < g < q, for every 
q in 2? satisfyifig q > f. 

PROOF. Note first that, since any two elements of 2? are logarithmically 
different, no two elements of 22 can be equivalent. Hence, if [i) is not satis- 
fied, we must be in the situation of case (i) of lemma 5. Thus it is sufficient to 
prove that (b) is satisfied when the set 4+ of elements 4 > f has no minimal 
element. We modify the proof of (i) of lemma 5 as follows. Previously, we 
chose a sequence (M?> of real constants inductively so that, when tcr, tiz, * * *, cc, 
were known, tl 7+1 was chosen large enough to satisfy (4)-(7). We now choose 
cr,,, so that in addition it satisfies 

(25) 

and 

inf x-l/log s,(x) s = 1, 2, * . *, r; 
C+ZS=--zj*,,, 
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unless qs = 73,. 
The conditions (25), (26) are sufficient to ensure that, when g is added to 

9, the new set is still a restricted set. 

LEMMA 6A. Sza&bose t, zc in V are exponentiaZly similar au? logarithkcally 
different and f in V satisfies t < f < u, thelz there exists s in V such that s, t, u 
form u restricted set and neither f < s, nor f > s is triue. 

PROOF. The following additional conditions need to be imposed in the 
inductive process used in lemma 6 which defines @). If /3,, /&, + * I, &-r 
are known & must satisfy (14) and (15), and in addition, 

(2’) 
11% %7--1&v) - 1% Wz,)l > r 

log log 2 

Similarly, if PI, * * -, /Yzr are known ,!&.,-i must satisfy (17), and in addition, 

(28) 
lk %r (i&+1) - 1% 4%,+1) I > r 

log log x 

The conditions (27), (28) will be sufficient to ensure that s(x) is logarithmi- 
cally different from both t and M. 

THEOREM 2A. If F is a countable restricted set of functions of cig, and / in. %? 
is comparable with each element of F, then there exists a functiova g in %? which is 
exponentially similar and logarithmically different to each element of F, but 
which satisfies Neither g < f nor g t f. 

PROOF. If 9, 9 are the subsets of F such that t < f, t > f respectively 
for t in 3, 9%‘; the case where neither 9 nor .B! is empty follows immediately 
as in the proof of theorem 2. The case where one of the sets 9, J%, say 9, is 
empty requires a small change in the argument. 

Apply lemma 5A to find an element to such that f > t, 2 t for all t E 3 
and t, together with F form a restricted set. Let 

fO) 
h(z) = t,(x) sup ~ 

OGGr. to(t) ’ 
for all x > 0. 

Then h (5) E ‘3 and h(x) 2 f(x) for all x. Further there will be an infinite 
strictly increasing divergent sequence Z1, C2, . . . such that 

w = f Or), I = 1, 2, - - -. 

It is clear that h is monotonically comparable with to and so with each 
function of Y. We now define a function g, which oscillates between to and 
I = izh, a~ follows: 
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(i) let a1 = 0, g,(x) = Z(x) for X > 0; 

(ii) if aI, CQ, * . ., c+-~; g,, g,, . * ., g21--1 have been defined, we 
choose azp to be such that 

aZr > aZrel + 1; 
and 

(29) g2v-l(a2,) > adla2J > hJa2,); 

and define a function g2?(x) by 

g2,(x) = g2,,(x), if 0 5 x 4 cczp., 

g,,Ix) = 92r--1(a2r) -5w , 
027J 

if aZr 5 2; 

(iii) if ccl, a2, * * *, x25; g,, g,, * * .I g,, have been defined, we first 
choose a2r+l to be such that 

g2, bzT+l) < f h2r+1) ; 
and 

(30) inf x-1~logg2,(x)-log.$(x)) <J- fors=l, 2;*.,r; 
a,,lrla,,, I 

and define a function g21.+l(x) by 

g2?+* (x) = g2&), if 0 I x 5 x2r+l, 

Z(X) 
g2T+1(x) = g2,(a2T+J~J if ~~~+1 S x- 

a2r+1 

Here tl, t,, * . * is an enumeration of the elements of F. 
If we put g(x) = limr+m g,(x), the condition (29) ensures that g islogarith- 
mically different from f and therefore from each element in Y, while the 
condition (30) ensures that g is exponentially similar to each element of F. 
The fact that g is monotonically comparable with each element of fl and 
that neither g > f nor g < f follows, as in the proof of lemma 6. This com- 
pletes the proof of the theorem. 

Lemmas +iA, 8A may now be stated in terms of countable restricted sets 
Y, and the proofs are immediate. There is no lemma PA, but lemma 11 to- 
gether with lemma 4 wilI play the role of lemma 4,4 in subsequent proofs. 
No change is required in lemmas 9 or 10, so we can deduce theorems 3A and 
4A immediately. 

In the inductive definition of scales Y7 given in section 5, the condition 
(22) is now replaced by: 

(=A) for ,u < z, the scale 9, is a restricted set. 

It will only be necessary to use theorem 4A to find a function g, such that g 
together with 5, form a restricted set and neither g > f, nor g < f, is true, 
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and put in the scale 9, all functions of the type 

gdt where a is real, t E .Yr. 

All that we need to prove is that Ysp7 forms a restricted set. If cc = ,d, it is 
clear that gut,, gfit, form a restricted set, where f,, t, are any two elements of 
FT. If u f B> 

ll% g” 4 - 1% ga4l = la - 81 Ilog g - log &I, 
for a suitable function t, E Yr. 

Since g and T7 together form a restricted set, it follows that g”tl, gflt, are 
exponentially similar and logarithmically different and hence Y7 is also a 
restricted set. 

Thus the method used in section 5 yields 

THEOREM 6. (Assuming the contintizcm hyfiothesis). There is an irreducible 
scale 9 which is maximal, fog whizich any two elements are motiotonically com- 
parable, but which has neither the property (PJ nor the property (P,). 
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