
ON THE STRUCTURE OF LINEAR GRAPHS 

ABSTRACT 

Denote by G(n; m) a graph of n vertices and m edges. We prove that every 
G(n; [n2/4] -t I) contains a circuit of 2 edges for every 3 5 I < czn, also 
that every G(n; [ns/4] + 1) contams a k&, u.) with u,, = [cl log n] (for 
the definition of k&,,. II,) see the introduction). Finally for t > ro every 
G(n; [tn”z]) contains a circuit of 21 edges for 2 5 I < ~$2. 

G(n; W) will denote a graph of n vertices and m edges, K(p) will denote the 
complete graph of p vertices, and K(p, pj will denote the complete bipartite graph 
of 2p vertices. More generally K(p,, e-e, p,) denotes the r-chromatic graph where 
there are pi vertices of the i-th color and any two vertices of diserent color are 
adjacent. K,(p,,...,p,.), p1 5 p2 S .*a 5 p*, will denote a K(p,, ‘em, p,) where 
two vertices of the first color are adjacent, i.e. K,(p,, *.. ,p,) is a K(p,, ..., p,) 
with an extra edge. The vertices of G will be denoted by x, x1, y, .,a ; 
the edge connecting x and y will be denoted by (x, y). (G - X, - ..a - x,) 
denotes the graph G from which the vertices x1, . . ..x. and all edges which are 
incident to them have been deleted, U(X), the valency of X, is the number of edges 
adjacent to X. Cr will denote a circuit having I edges. cl, c2, -1. denote suitable 
positive absolute constants. [t] is the greatest integer not exceeding t. 

A special case of a well known theorem of Turin [l] states that every 
G(n; [n’/4] + 1) contains a K(3) (i.e. a triangle). Dirac and I observed 
(independently) that every G(n; [n’/4] + 1) contains for every 4 =< k 5 n a sub- 
graph G(k; [k2/4] + 1) and in fact Dirac proved a more general theorem [2]. 

In the present paper we continue the investigation of the structure of the graphs 
G(n; [n”/4] + 1) and we are going to prove the following theorems: 

THEOREM 1. PUN [cl log n] = u,. Every G(n; [n2!4] + 1) contains a K,(u,&. 

REMARK. The structure of K,(u,,u,) is clearly uniquely determined. It is the 
G(2u,; U: + 1) which contains a K(u,,u,) as a subgraph. 

THEOREM 2. Every G(n; [n2/4] +l) contains a C, for every 3 5 15 c,n. 

THEOREM 3. Let i>t,, then every G(n; [in3’2]) contains a C,, fur every 
2 5 1 < C,P. 
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Apart from the value of cr Theorem 1 is best possible. In fact we can show 
the following 

THEOREM 4. To every E > 0 there is a C(E) so that for every n there is a 

G(n; [(I)(1 - E)]) which d oes not confain a K([c(s)logn], [c(s)logn]). 
We suppress the proof of Theorem 4 since it uses the methods used in [3]. 

A theorem of A, H. Stone and myself [4] implies that every G(n; [srr”]) contains 
a K([cl(e)log n], [c,(s)log n]). The exact determination of C(E) and cl(s) seems 
difficult. 

I would expect that the exact determination of c2 in Theorem 2 will be difficult. 
Theorem 3 is best possible in the sense that E. Klein [S] showed that there is a 

G(n; [c&J) which contains no Cd. For t > t, perhaps every G(n; [tn3’2]) 

contains a C2, for every 2 5 I< c5 tn112 ; if true, then apart from the value of c5 
this is easily seen to be best possible. 

By the same method as used in the proof of Theorem 1 we can prove 

THEOREM 5. To every k there is an n, = n*(k) and a ck so that, for n > n,, 
G(n; [n”,/4] + k) always contains a K([c,logn], [c,logn]) and kfurther edges. 

We suppress the proof of Theorem 5. Put rk = [c,logn]. For k > 1 the structure 
of our G(2r,; ri + k) is of course not uniquely determined. Perhaps the following 
result holds: Let ~12 8. Then every G(n; [n”/4] -I- n - I) contains a K([clogn], 
[c log rr]) and two edges which have no vertex in common and all four vertices of 
which have the same color. It is easy to see that a G(n; [n”/4] -I- n - 2) does not 
have to have this property. To see this consider a K([n/2], [(rr + 1)!2]) 
where further one vertex of each color is adjacent to all the vertices of our graph 
i.e., the vertices of our G(n; [n2/4] + n - 2) are x1, .*a, x,; yi, .a=, yi 
k = [a/2], Z= [(n + 1)/2] and its edges are 

(xi,yj); 1 5 i 5 k, lsjz 2 and (x~,x~),(Y~,Y~); 2 s i 5 k, 2 5js 1. 

Put 

m(n,p) = -+j$(n’ - r2) + (5), n = (p - 1) t + r, 1 5 r 5 p - 1. 

Turin proved that every G(n; m(rz,p)) contains a K(p) and Dirac and I [2] observed 
(independently) that it contains a K(p + 1) from which one edge is missing . By 
very much more complicated methods I can prove that for 12 > n&p, k) G(n; m(n, p)) 

contains a p chromatic subgraph K(k, . . . . k) and one further edge (i, e., a 
K(k,-~~, k)); for p = 2 this is a weakened form of Theorem 1. 

Now we prove Theorem 1. First we need two Lemmas. 

LEMMA 1. Every G(n; m) contains a subgraph G(N,M) every vertex of 
which has valency greater than [m/n]. Further 

(1) Mzm-(n-N) z [ 1 
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(The Lemma of course means that every vertex of G(N,M) has valency in 
G(N,M) greater than [m/n]). 

If every vertex of G(n, m) has valency > [n/m], there is nothing to prove. 
Hence we can assume that G(n, m) has a vertex x1 of valency 4 [m/n]. If 
G(n; m) - x1 has a vertex x, with ZI(XJ 5 [ml n] we consider G(n; m) - x1 -x2. 
We repeat this process and obtain a sequence of vertices x1, “.,xk so that the 
valency of x, in (G(n; m) - x1 - **m - x,-,)is ~[m,/n]foreveryi~i;~fY-1, 
but every vertex of 

(2) (W; m> - x1 - ..a- x).) = G(N; M) 

has valency > [m/ n]. 
Clearly M > 0 for otherwise, since (G(n; m) - x1 - .++ - x,, _ ,) has only one 

vertex and thus no edges, we can put in (2) k 5 n - 1 and by our construction 
we would have 

mzS(n-1) t <m 
[ I 

an evident contradiction. Further by our construction (k = n - N) 

MZm-(n-N) z [ 1 
which proves (l), and the proof of Lemma 1 is complete, 

LEMMA 2. Let m> [n’/4]. Then every G(n; m) contains a K,(2,k) where 
k = [c&J. 

Lemma 2 is known 1.61. 
Now we can prove Theorem 1. In fact we shall prove the stronger statement: 
To every E > 0 there is a c1 = cl(a) so that every G(n; [n2/4] + 1) contains a 

K,t[cJwl], [n’- “I,. 
By Lemma 1 our G(n ; [n”/4] + 1) contains a subgraph G(N, A4) every vertex of 

which has valency > [ 
[n2/4] + 1 

n ] = [q/4]. Further (1) implies by a simple 
computation 

(2) MZ [ 1 ; +l-(n-N) [:I >[T]- 
Further since every vertex of G(N,M) has valency > [n/4] we have 

By (2) Lemma 2 can be applied to G(N, M) and by Lemma 2 and (3) we obtain 
that G(N, M) contains a K,(2, k) with k= [c5n/4]. Let the vertices of our K,(2, k) 

be (we choose c5 < l/ 3) 
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x1,x2; Yl, “‘YYk, k=p!] < [+I -i 

Denote by zl, ..eY z, the other vertices of G(N, M). Each y has by Lemma 1 valency 
> [n/4] (in G(N, M)), hence each *vi, 1 5 i 5 k is connected with more than 

;-2-k+l>$ 

2’s. ((5) follows immediately from (4) since the number of x’s and y’s is k +2 < 

[n!SJ f 1 and in the worst case yi is connected with all of them). 

Let zi!), 1 s ,j 5 fi, li > n/8, be the z’s adjacent to yi. Form all the (u,,-2)-tuples 
(u, = [cl logn] of Theorem 1) of these vertices for each i,l 5 i S k = [csn/4]. 

By a simple computation we obtain (we use (i) > (a/ b)b) 

(6) 

Further trivially 

(7) 
n 

( > 
n%-2 n”“-~e%-2 

%I -2 < (t&-2)! -= (u,-2)%x-2 < $2 

fin-2 
( > 

Hence from (6) and (7) 

(8) ;, ($2) ’ cy (&) & ’ ni-- (u.12) 

for every E >O if cl = cl(s) is sufficiently small. The number of the z’s is clearly 
less than n, hence the number of the (u, - 2)-tuples formed from z’s is less than 

! > *,!2 ’ 
Thus from (8) there is a (u, - 2)-tuple which occurs more than 

nl-’ times-in other words there is a set of U, - 2 z’s which are adjacent to the 
same [n’-“1 y’s. If we adjoin to these z’s x1 and x,, (which are adjacent and are 
adjacent to all y’s) we obtain that G(N; M) and hence our G(n; [n”/4] + 1) 
contains a K,(u,, n’-‘) f or every E > 0 if c1 = cr(c) is sufficiently small. This 
completes the proof of our assertion and hence Theorem 1 is proved. 

Proof of Theorem 2. As in the proof of Theorem 1 our G(n; [n”/4] + 1) 
contains a K,,(2, [c5n/4]), c5 <11/3, having the vertices x1,x2, yl, . . ..yk. 
k= [csnj4]. Each of the k vertices y,,.*., yk are adjacent to more than n/8 
z’s (we use the notations of Theorem 1). Consider now the bipartite graph whose 
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vertices are y,,--.,y,; zl, -**, z, and whose edges are the edges (y,, zj) of G(n ; m). 
This bipartite graph has fewer than n vertices and more than 

n c5n s 4 = c6n2 [ 1 
edges. Hence by a theorem of Gallai and myself [7] it has a path of length cZn 
(the length of a path is the number of its edges). Since our graph is bipartite every 
second of its vertices is a y. Now since x, and x2 are adjacent and they are adjacent 
to each of the y’s we immediately obtain that our G(P~; [nZ/4] + 1) contains a 
CI for each 3 s k =< [czn], which proves Theorem 2. 

Proof of Theorem 3. By Lemma 1 G(n; [tn3’2]) contains a subgraph G(iV; hf) 
every vertex of which has valency 2 [oz~‘~]. Let x be one such vertex and let 

Y1* -b’,yk, k = &[tn”“] be some of the vertices adjacent to x and denote by 
Zl, *-- the other vertices of G(N, Al). Every y has valency 2 [oz~‘~], thus 
since the number of y’s is $[tr~“~] there are at least + [tn”‘] z’s adjacent 
to each y. Hence the bipartite graph whose vertices are y,, *de, yk: zl, .-. and whose 
edges are the edges (yi,zi) of G(n, m) has at least 

k iJ[#‘] = $[tni’2]2 > $I 

edges. The number of its vertices is clearly < n. Thus by the theorem of Gallai 
and myself [7] it has a path of length > 2c, t2 and as in the proof of Theorem 2 
every second vertex of this graph is a y. Since x is adjacent to every y this path 
together with the vertex x gives the required circuits C2r, 2 5 Is c$~, which 
proves Theorem 3. 
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