A Problem Concerning the Zeros of a Certain Kind of Holomorphic Function in the Unit Disk

By F. Bagemihl in Detroit and P. Erdös in London and Budapest

To Helmut Hasse on his 65. birthday

Let f(z) be a holomorphic function in the open unit disk D in the complex plane. Suppose that there exists a sequence of distinct Jordan curves $J_1, J_2, \ldots, J_n, \ldots$ in D satisfying the following conditions:

- (a) J_n lies in the interior of J_{n+1} (n = 1, 2, 3, ...) and
- (b) given any $\varepsilon > 0$, there exists an $n_0 = n_0(\varepsilon)$ such that, for every $n > n_0$, J_n lies in the region $1 \varepsilon < |z| < 1$.

Set

$$u_n = \min_{z \in L} |f(z)| \qquad (n = 1, 2, 3, \ldots).$$

If $\lim \mu_n = \infty$, then we call *f*, for brevity, an annular function.

As is evident from this definition, an annular function f is not identically constant, and K, the unit circle, is its natural boundary. Furthermore, according to Kierst and Szpilrajn ([5], p. 291), every holomorphic function in D has at least one asymptotic value, and an annular function evidently can have only ∞ as an asymptotic value; therefore A(f), the set of asymptotic values of f, contains ∞ as its sole element. It is known that annular functions exist; we shall refer to examples later.

If f is an annular function, denote by Z(f) the set of zeros of f. It follows from a theorem of Collingwood and Cartwright ([3], p. 112, Theorem 9, (ii)), that Z(f) is an infinite set of points in D. Let Z'(f) be the set of limit points of Z(f). Then clearly $Z'(f) \leq K$. We shall be concerned in this article with the following

Problem: If f is an annular function, does Z'(f) = K?

It is known that there exist annular functions for which Z' = K. A function of Koenigs was shown by Fatou ([4], p. 272) to be of this nature, and annular functions were constructed by Wolff (see [12]) as well as by Bagemihl, Erdös, and Seidel (in [1]) in such a way that Z' = K. For each of these functions, every point of K is the end point of an asymptotic path of f.

The following theorem enables us to infer that Z' = K for other known annular functions.

Theorem 1. Let f be an annular function. Suppose that there exists an everywhere dense subset E of K such that every point of E is the end point of an asymptotic path of f. Then Z' = K.

Proof. First we require some definitions.

Let $\zeta = e^{i\theta}$, and call the extended complex plane Ω . The set $\Gamma(f, |\theta' - \theta| < \eta)$ is defined to be the set of all points $\omega \in \Omega$ with the property that there exists an asymptotic path on which f tends to ω and whose end is contained in the open arc

$$\zeta' = e^{i\theta'}, \ \theta - \eta < \theta' < \theta + \eta.$$

Now put $\chi(f, \zeta) = \bigcap_{\eta} \Gamma(f, | \theta' - \theta | < \eta)$. Another set that we need is $\Phi(f, \zeta)$, which is defined as the set of all points $\omega \in \Omega$ with the following property. Let $\zeta_1 = e^{i\theta_1}$ and $\zeta_2 = e^{i\theta_1}$ be distinct points of K, with $\theta_1 \leq \theta \leq \theta_2$, $0 < \theta_2 - \theta_1 < 2\pi$, and denote by Λ the closed arc $\theta_1 \leq \arg z \leq \theta_2$, |z| = 1. Suppose that $\{\Lambda_n\}$ is a sequence of Jordan arcs in D, where Λ_n has end points $z_n^{(1)}$ and $z_n^{(2)}$, $\lim_{n \to \infty} z_n^{(1)} = \zeta_1$, $\lim_{n \to \infty} z_n^{(2)} = \zeta_2$, Λ_n is contained in an annulus $1 - \varepsilon_n < |z| < 1$, $\lim_{n \to \infty} \varepsilon_n = 0$, and Λ is the limit of the sequence $\{\Lambda_n\}$. If for every $z \in \Lambda_n$ we have $|f(z) - \omega| < \delta_n$ or $|1/f(z)| < \delta_n$ according as ω is finite or is the point at infinity, where $\lim_{n \to \infty} \delta_n = 0$, then by definition $\omega \in \Phi(f, \zeta)$. Finally, $R(f, \zeta)$ is defined to be the set of values ω such that ω is assumed by f at infinitely many points in every neighborhood of ζ .

Now Collingwood and Cartwright have proved ([3], p. 129, Theorem 16, (ii)) for a meromorphic function f in D, that if $\Gamma(f, |\theta' - \theta| < \eta)$ is of linear measure zero for some $\eta > 0$, then

(1)
$$\Omega - R(f, \zeta) \leq \chi(f, \zeta) \cup \Phi(f, \zeta).$$

For our annular function f, we have $\Gamma(f, | \theta' - \theta | < \eta) = \{\infty\}$ for every $\eta > 0$, so that this set is of linear measure zero, and hence (1) holds. Clearly $\chi(f, \zeta) = \{\infty\}$, and due to the nature of the set E, we have also that $\Phi(f, \zeta) = \{\infty\}$. It follows from (1) that $0 \in R(f, \zeta)$, and consequently Z' = K.

Examples of annular functions in the form of power series $\sum_{k=0}^{\infty} a_k z^{n_k}$ have been given by Lusin and Privalov ([6], p. 148), Davidov (see [10], p. 119), and MacLane ([7], p. 181). An examination of the gaps in these series reveals that in each case

(2)
$$\liminf_{k \to \infty} \frac{n_{k+1}}{n_k} > 3.$$

MacLane has shown ([8], p. 46, Theorem 19) that (2) implies the existence of an everywhere dense subset E of K such that every point of E is the end point of an asymptotic path of the function f represented by the series. Hence, according to Theorem 1, Z'(f) = K.

Theorem 1 is thus seen to be useful in showing that Z' = K for some annular functions. The next theorem shows, however, that the relation Z' = K is a consequence of a much weaker hypothesis.

If Λ is a path in D terminating in a point $\zeta \in K$, then $C_{\Lambda}(f, \zeta)$ is defined to be the set of all points $\omega \in \Omega$ with the property that there exists a sequence of points $z_n \in \Lambda$ with $\lim_{n \to \infty} z_n = \zeta$ and $\lim_{n \to \infty} f(z_n) = \omega$.

Theorem 2. Let j be an annular function. Suppose that there exists an everywhere dense subset E of K such that every point ζ in E is the end point of a path Λ in D with the property that $0 \notin C_{\Lambda}(f, \zeta)$. Then Z' = K.

Proof. We indicate briefly how this theorem follows from a result established by Ohtsuka ([9], p. 319, Theorem 2).

First of all, it is not difficult to show (see, e. g., [2], p. 1071) that since f is an annular function, the global cluster set of f at any point $\zeta \in K$ (Ohtsuka denotes this set by S_{ζ}) is Ω .

Take Ohtsuka's w_0 to be the value 0. Then, since $A(f) = \{\infty\}$ for our annular function f, it is easy to see that the set $N_e^{(C^*)}$ in Ohtsuka's theorem is a subset of $\{\infty\}$. Hence, condition (C_1) in that theorem is satisfied, and condition (C_2) is just our assumption concerning the set E localized to a point ζ of K. Since $0 \notin A(f)$, it follows from Ohtsuka's theorem that the value 0 is assumed by f in every neighborhood of ζ , and consequently Z'(f) = K.

In view of the fact that for the known analytically defined annular functions it is also known that Z' = K, and that there exists a subset E of K of the kind described in Theorem 1, it is perhaps natural to attempt to solve the problem formulated at the beginning of this paper by trying to show that such a set E, or at least a set E of the kind described in Theorem 2, exists for every annular function. This approach is unfruitful, however, because of

Theorem 3. There exists an annular function f such that $0 \in \Phi(f, \zeta)$ for every $\zeta \in K$.

Proof. We define f as the product of the following two functions g and h.

Take g to be an infinite product of the sort described in ([1], p. 136). Then g is holomorphic in D, and there exists (see [1], p. 139, Theorem 3) an increasing sequence $\{\varrho_n\}, 0 < \varrho_n < 1, \lim_{n \to \infty} \varrho_n = 1$, such that, setting

(3)
$$\mu_n = \min_{|z| = \varrho_n} |f(z)|,$$

we have

(4)
$$\lim_{n\to\infty}\mu_n=\infty,$$

so that g is an annular function.

We define the function h by an induction process as an infinite product of polynomials.

First, for every natural number n, let

$$D_n = \{z: |z| \leq \varrho_n\},$$

and put

$$S_{n} = \left\{ z: |z| = \frac{2}{3} \varrho_{n} + \frac{1}{3} \varrho_{n+1}, -\frac{3\pi}{4} \leq \arg z \leq \frac{3\pi}{4} \right\},$$
$$T_{n} = \left\{ z: |z| = \frac{1}{3} \varrho_{n} + \frac{2}{3} \varrho_{n+1}, \frac{\pi}{4} \leq \arg z \leq \frac{7\pi}{4} \right\},$$
$$V_{n} = S_{n} \cup T_{n}.$$

If a function is holomorphic in D_n and continuous on $D_n \cup V_n$, then, as is well known (see [11], p. 47, Theorem 15), it can be approximated arbitrarily closely and uniformly on $D_n \cup V_n$ by a polynomial.

Let $\{\varepsilon_k\}$ be a sequence of positive numbers such that

(5)
$$\sum_{k=1}^{\infty} \varepsilon_k = 1.$$

The function that is identically 1 on D_1 and identically 0 on V_1 is holomorphic in D_1 and continuous on $D_1 \cup V_1$. Hence, there exists a polynomial $p_1(z)$ satisfying the conditions

$$p_1(z)-1 \mid < \varepsilon_1 \qquad (z \in D_1),$$

$$|p_1(z)| < \varepsilon_1 \qquad (z \in V_1)$$

Now let k > 1, and assume that polynomials $p_j(z)$ and natural numbers $n_j(j = 1, ..., k - 1)$ have been defined, where $n_1 = 1$.

Since g is an annular function, and $p_1(z) \cdots p_{k-1}(z)$ is bounded in D, there exists a natural number $n_k > n_{k-1}$ such that

(6)
$$|g(z) \cdot p_1(z) \cdots p_{k-1}(z)| > k \qquad (|z| = \varrho_{n_k}).$$

Put

(7)
$$M_{k} = \max_{z \in V_{n_{k}}} |g(z) \cdot p_{1}(z) \cdots p_{k-1}(z)|.$$

As before, there exists a polynomial $p_k(z)$ such that

$$(8) | p_k(z) - 1 | < \varepsilon_k (z \in D_{n_k})$$

and

(9)
$$|p_k(z)| < \frac{\varepsilon_k}{M_k}$$
 $(z \in V_{n_k})$

The sequence of polynomials $\{p_k(z)\}$ is thus defined by induction on k, and we set

(10)
$$h(z) = \prod_{k=1}^{\infty} p_k(z)$$
 $(z \in D).$

Because of (5) and (8), h is holomorphic in D.

Take

(11)
$$f(z) = g(z) \cdot h(z) \qquad (z \in D).$$

Then f is not only holomorphic in D but is also an annular function; for if $|z| = \varrho_{n_k}$, then by (11), (10), (6), and (8) we have

$$|f(z)| = |g(z) \cdot p_1(z) \cdots p_{k-1}(z)| \cdot |p_k(z)p_{k+1}(z) \cdots |$$

> $k \cdot |p_k(z)| |p_{k+1}(z)| \cdots$
> $k \cdot (1 - \varepsilon_k) (1 - \varepsilon_{k+1}) \cdots,$

and the last expression tends to ∞ as $k \to \infty$.

If $z \in V_{n_i}$, then using (7), (9), and (8) we find that

$$|f(z)| = |g(z) \cdot p_1(z) \cdots p_{k-1}(z)| \cdot |p_k(z)| \cdot |p_{k+1}(z)| p_{k+2}(z) \cdots |$$

$$\leq M_k \cdot \frac{\varepsilon_k}{M_k} \cdot |p_{k+1}(z)| |p_{k+2}(z)| \cdots$$

$$< \varepsilon_k \cdot (1 + \varepsilon_{k+1}) (1 + \varepsilon_{k+2}) \cdots,$$

and the last expression tends to 0 as $k \to \infty$. Bearing in mind the definition of V_{n_k} , we see that this implies that $0 \in \Phi(f, \zeta)$ for every $\zeta \in K$.

The problem formulated in this paper is unsolved, and we hope that what we have said about it will tempt the reader to try to find a solution.

Bibliography

- F. Bagemihl, P. Erdös and W. Seidel, Sur quelques propriétés frontières des fonctions holomorphes définies par certains produits dans le cercle-unité, Ann. Sci. École Norm. Sup. (3) 70 (1953), 135-147.
- [2] F. Bagemihl and W. Seidel, A general principle involving Baire category, with applications to function theory and other fields, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1068-1075.
- [3] E. F. Collingwood and M. L. Cartwright, Boundary theorems for a function meromorphic in the unit circle, Acta Math. 87 (1952), 83-146.
- [4] P. Falou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 208-314.
- [5] S. Kierst and E. Szpilrajn, Sur certaines singularités des fonctions analytiques uniformes, Fund. Math. 21 (1933), 276-294.
- [6] N. Lusin and J. Priwaloff, Sur l'unicité et la multiplicité des fonctions analytiques, Ann. Sci. École Norm. Sup. (3) 42 (1925), 143—191.
- [7] G. R. MacLane, Meromorphic functions with small characteristic and no asymptotic values, Michigan Math. J. 8 (1961), 177-185.
- [8] G. R. MacLane, Asymptotic values of holomorphic functions, Rice Univ. Studies 49 (1963), 1-83.
- [9] M. Ohtsuka, On boundary cluster sets of functions analytic in the unit circle, Rev. Math. Pures Appl. 2 (1957), 317-321.
- [10] I. I. Priwalow, Randeigenschaften analytischer Funktionen, 2d ed., Berlin 1956.
- [11] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3d ed., Providence 1960.
- [12] J. Wolff, On the boundary limit infinite of a holomorphic function, Proc. Kon. Akad. Wet. Amsterdam 31 (1928), 718-720.

Eingegangen 2. Juni 1963