EXTREMAL PROBLEMS IN GRAPH THEORY

P. ERDOS

In the present paper ®(n; 1) will denote a graph of n vertices and  edges. K, will
denote the complete graph of p vertices & (p; (g)) and K(p, p) will denote the com-

plete bipartite graph, more generally K(p,, ..., p,) will denote the complete r-chro-
matic graph with p; vertices of the i-th colour, in which every two vertices of different
colour are adjacent. C, will denote a circuit having n edges.

In 1940 TURAN [1] posed and solved the following question: Determine the smallest
integer m(n, p) so that every &(n; m(n, p)) contains a K,,. Turdn in fact showed that
the only ®(n; m(n, p) — 1) which contains no K, is K(mq, .... m,_,) where the m;
are all as nearly equal as possible,i.e.forO0 £ i < p — 2 m; = [(n + i — 1)f(p — 1)].
Thus a simple computation gives that if n = r (mod p — 1) then

B2 3. 2 r
m(n, p) Z(p—l)(n r)+(2).
Turdn further asked: How many edges must a graph contain that it should certainly
have subgraphs of a prescribed structure? In particular he asked: Determine the
smallest h(k, n) so that every ®(n; h(k, n)) should contain a path of length k. GALLAI
and I [2] and ANDRASFAI [2] investigated these and related questions and solved
them nearly completely. In the present paper we shall try to investigate as systema-
tically as possible the following question: What is the smallest integer f(n; k, I) for
which every graph ®&(n; f(n; k, 1)) contains a &(k; I) as a subgraph? These problems
become very much more difficult, but in my belief also more interesting, if we also
consider the structure of the graphs &(k; I). We now define three functions f{(n; k, 1),
1 £ i £ 3.f(n; k, 1) is the smallest integer for which every ®(n; f(n; k, I)) contains
at least one ®(k; I). fa(n; k, 1) is the smallest integer for which there is a ®(k; I) of
given structure so that every G&(n; f,(n; k, I)) contains this &(k; ). f3(n; k, 1) is the
smallest integer so that even the &(k;I) which requires most edges occurs in
&(n; f3(n; k, 1). Clearly &(n; f3(n; k, I)) contains all the graphs of k vertices and [
edges. Trivially

Silns ke, 1) < folns k1) < fi(ms &, 1)

It is easy to see that in general f(n; k, I) < f,(n; k, I), since it is not hard to see that
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for n > 7 fi(n; k, [K*/4] + 2) = [n?/4] + 2 but G(n; [n?/4] + 2) does not have to
contain any ®(k; [k*/4] + 2) of any given configuration. Further it is easy to see
that in general fy(n; k, I) < fy(n; k, 1). Further I recently proved that

(1) falnsk, 1) = £, (n; u, (’;))
where (2) £ (“ ‘; l) .

Now we will try to determine as systematically as possible the values of f,(n; k, I}

for fixed k as ! increases from 1 to (Z), as far as possible we will investigate f(n; k, I}

too (for 2 < i < 3), in other words we will investigate structural problems too.

We will give no proofs in this paper; if no reference is given to a result then it is
not yet published.

Assume first | < k. If I < 3k then trivially (where there is no danger of misunder-
standing we write f(n; k, 1) for f,(n; k, 1))

(2) flnik, )y =1.

If 2k < I < k then it is easy to see that

(3) fl k) =f(n; 20+ 2=k 21+ 1 —K).
Finally

(4) Finz k,k-—l):[(—kf—z)l—n]+l.

The structural problems are very much more difficult: GALLAI and I proved [3]
that cvery

(5) O ek, n)), e(k, n) = max [(2’( . 1) A = s e

k-1
T ( ) + 1}
2

contains k independent edges and that this result is the best possible. The proof is not
easy. Trivially every G(n; [3(k — 1) n] + 1) contains a star of valency k. Further
Gallai and I[2] proved that every ®(n; [3(k — 1) n] + 1) contains a path of length k.
V. T. Sés and I conjectured that every ®(n; [3(k — 1)n] + 1) contains all trees
having k edges and that every &(n; ¢(k, n)) contains all forests (i.e. graphs all whose
components are trees) of k edges, but we did not succeed to prove any of these
conjectures.

For | = k there is a sharp jump in the behaviour of f(n; k, [) since f(n; k, k)/n — o
for every fixed k as n — oo. Before we continue our investigations for general k, we
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discuss as completely as possible the cases k = 3, 4 and 5. For k = 3 there is only
one graph ®(3; 3), the triangle, and by Turan’s theorem [1]

f(n; 33)_[2]+1

For k = 4 there are two graphs (4; 4), the square and the triangle, with an edge.
A simple argument shows that forn = 4

2

fi(n;4,4) = +1.

QAXW

Fig. 1.

On the other hand the determination of f(n; 4, 4) = f,(n; 4, 4) seems to be a very
difficult problem (i.e. how many edges does a graph of n vertices have to have in
order to contain a square?).

E. KLEIN and 1 proved [4] that (the ¢’s denote suitable absolute constants)
eyn¥? < fi(n; 4,4) < c,n’?

The sharpest estimates at present are due to REIMAN [5]; he proved

lJmf(n 4,4)n*? < 1.

o W
It seems likely that the limit in (5) equals %,/2 but it is not even known whether the
limit in question exists.

It is easy to see that f(n; 4, 5) = [n?/4] + 1 [6], there is only one graph ®(4;5);
K, minus an edge. More generally Dirac and I [7] proved (independently) that
every &(n; m(n, k)) already contains a K, from which at most one edge is missing.

f(n; 4, 6) is given by Turdn’s theorem.

It isnot difficult to see that for n > ng, f3(n; 5, 5) = [n?/4] + 1. The graphs §(5; 5)
are in Fig. 1 and c gives for n > ng, f,(n; 5, 5) = f,(n; 5, 5) = f,(n; 4, 4).
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CavaLLus [8] obtains an upper bound for f,(n; 5, 6) = fy(n; 5, 6) (more ge-
nerally he gives an upper bound for u(n; 2, k) where u(n; 2, k) is the smallest integer
for which every &(n; u(n; 2, k)) contains a K(2, k)).

Besides K(2, 3) the other graphs &(5; 6) are given by Fig. 2 and it is easy to see
that if n > ng all of them appear in an &(n; [n*/4] + 1), thus f5(n; 5, 6) = [n*/4] +

Do

Fig. 2.

There are four types of graphs &(5; 7), Fig. 3. Dirac and I showed (independently)
that for n > n, every &(n; [n*/4] + 1) contains graphs of types a and b, i.e.
fi(n; 5,7) = fy(n; 5, 7) = [n*/4] + 1. I showed that every ®(n; 1), I, = [n*/4] +
+ [n/4] + [(n + 1)/4] + 1 contains also subgraphs of the type ¢ and it is easy to
determine all the graphs &(n; I, — 1) which do not contain graphs of the above type.

M Qo

Fig, 3.

As already stated, Dirac and I showed that every &(n; [n?/4] + 1) contains d, in
fact it even contains a &(5; 9).

There are two types of &(5; 8), Fig. 4. a is settled by the sharpening of Turdn’s
theorem due to Dirac and myself, Dirac and I further showed (independently) that
every &(n; I,) contains b.

®(5; 9) and G(5; 10) present no new difficulties.

I did not carry out a similar discussion for graphs having 6 vertices. 1 only state
one result which seems interesting:

2 2
fin; 6,12) > n: + ¢3n®?, fy(n;6,12) < n—; + ¢,n3?
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and in fact every ®(n; [n?/4 + c,n*?]) contains as subgraph an octahedron. I cannot
prove that lim (fy(n; 6, 12) — n?/4)/n/* exists.

Now we return to the discussion of f,(n; k, I) for general k. First of all I proved
that for k = 3

(6) Filnck, k) < el FAME,
It seems likely that
(7 filn: k, k) > ¢+ 1K)

but I can prove (7) only for 3 < k £ 5. Ican
prove the weaker result a b

®) fi(n; k, k) > nt ¥ Fig. 4.

for a certain &, > 0.

I can also prove that every ®(n; [cy'n' **/¥]) contains a C,; the proof is more
difficult than the proof of (6).

For large values of k our three functions f{n; k, 1) do not suffice to describe
completely the many problems, since there are very many graphs &(k; I), but we have
not succeeded in solving or even in classifying the many problems which can be posed
here; I will try to state here all the results which are known.

I showed that for n > no(k), every ®(n; [n*/4] + 1) contains a Cyyy,; in fact
there exists an absolute constant ¢ so that every ®(n; [n?/4] + 1) contains every C,
for 3 < m < cn. The proof is not trivial. K([n/2], [(n + 1)/2]) shows that [n?/4] + 1
is best possible [13].

Now we investigate the range k < I < k*/4. KOVARL the TuRANs [9] and
(independently) I proved that every ®(n; [¢,n?~*/¥]) contains a K(k, k). It seems
likely that this result is best possible and in fact we conjectured

Filo 2k, k) > oun® 0%
but this is proved only for k¥ = 2, and we could not even prove that

lim f(n; 6, 9)/n%? = .

Further I proved that every ®(n; [Bn*~"/*]) contains a K(k + 1, k + 1) from
which one edge is perhaps missing (the structure of this graph is uniquely determined).

In the range k < I < [k?/4] I do not have good estimates for f(n; k, I), I cannot
even prove that for fixed k and sufficiently large n, f(n; k, 1) is a strictly monotone
function of I
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I proved that for every ¢ > 0 there is an 7 = 5(g) > 0 so that for k > ky(y) and
n > ny(k, & 1),

(9) f(n; &, [(1 + n) k] < n'*e

(the opposite inequality, with a different ¢, follows from (8)).
Further for every k = 2¢ and n > ny(k), I < ck,

(10) fln; k, 1) < n?*

where ¢ depends only on c¢. In fact the following stronger result holds: Every
@(n; [n*~*]) contains a subgraph of K([k/2], [k/2]) which has at least ck edges for
every 2¢ < k £ nif n > no(k) and & = &(c).

On the ather hand, to every & > 0 there isa C = C(g) so that

(11) T %, Ch) > ™"

Instead of (11) the following sharper result can be proved: Let &’ < ¢ and C =
= C(g) be sufficiently large. If n > nye, &', C) then there exists a ®(n; [n*~7])
which does not contain a subgraph @5(?{; Ck) for every k < n®. This result is nearly
the best possible, since it is not hard to show that every ®(n; [n®>~°]) contains
a ®(k; Ck) for some k < C;n® where C; = C,(¢) is sufficiently large.

I would like to state here one further result which can be proved by praobabilistic
methods [10]: Let & > 0, C > 1 be arbitrary. There is a graph ®(n; Cn) so that
every subgraph of it spanned by m < nn vertices has fewer than m(1 + &) edges;
n = n(e, C) could easily be estimated explicitly.

It is not hard to show that [11] for & > 1 every &(n; [an]) contains a circuit of
length < Blogn, where B depends only on «. Probably every ®(n; [an])(x > 1)
contains a subgraph ®([ B, log n]; [B;log n] + 1) where B, depends only on .

Now we give a very short discussion of I > [k?/4]. Dirac and I showed
independently that every ®(n; [n?/4] + 1) contains, for every k < n, a G(k; [k*/4] +
+ 1). In fact Dirac proved a more general theorem.

Considerably more difficult is the proof of the following result: To every k there
is an no(k) so that for every n > ny(k) every &(n; [n*/4] + 1) contain sa K(k, k)
with an extra edge (the structure of these graphs is uniquely determined) [13].

It is not hard to show by complete induction that for [(k + 1)/4] = u,

(12) fi (n; k, I:%—z-] § u) - [%il tu.

It is easy to see that (12) no longer holds for u > [(k + 1)/4], but the discontinuity
is not very sharp since it is easy to see by induction that if n = k then
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and now there is a sharp discontinuity since it is not difficult to show that

G s R DR

by (8). We can determine the values of f(n; k, [k*/4] + I) for [(k + 1)/4] < I <
< [(k — 1)/2], but the formulas are complicated and we omit them.

By very complicated arguments 1 can show that every &(n; [n?/4 + n'*1//2T])
contains a K(k, k) and a circuit whose vertices are all the vertices of one of the k-tuples.

In 1946 SToNE and I proved [12] that for every ¢ > 0 and every k if n > n(e, k),
®&(n; [(n*/4)(1 + ¢)]) contains a K(k, k, k); by a refinement of our method I can in fact
show that for sufficiently large C every ®(n;[n?/4 + Cn®~'/¥]) already contains
a K(k, k, k).

I do not pursue the investigations of f(n; k, I) further since a complete analysis is
hopeless at present and so far I have succeeded to find no new phenomena in the

interval k2/3 < 1 < ('2‘) .

Before completing the discussion of fi(n; k, I) I would like to mention two further
problems: It is not hard to show that

f(n;7,15)=[’ﬂ+[“;’1]+1.

But I cannot decide the question, how many edges must a graph of n vertices have
in order that it contain a K(1, 3, 3)? Perhaps [n®/4] + n + 1 edges suffice for this
purpose. It is easy to see that [n?/4] + n edges are not sufficient. (Added in proof:
I succeeded in proving this conjecture.) Very many other such problems could be
stated.

Turdn asked in a conversation to determine the smallest number of edges that
a graph of n vertices must have in order that it contain the various regular bodies.
For the tetrahedron the answer is m(n, 3) by [1], the octahedron has already been
discussed. The problem of the cube seems difficult. T can show that for sufficiently
large ¢ every ®(n, [cn/?]) contains a hexagon and a vertex joined to three non ad-
Jjacent vertices of the hexagon but I cannot decide whether it contains a cube. The
icosahedron, dodecahedron and higher dimensional cubes have not been investigated
so far.

Before completing the paper I would like to state a few related results which cannot
be described in terms of our functions f(n; k, I). Pésa and I [11] proved that for
n > 24k, every ®(n;(2k — 1)n — 2k*> + k + 1) contains k vertex independent
circuits (i.e. k circuits which pairwise have no common vertex). But we have not
succeeded in solving the extremal problem for 3k = n < 24k, except for a few special
values of k.
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Pésa proved that every ®(n; 2n — 3) contains a circuit with at least one diagonal
and that the result is false for &(n; 2n — 4). Czipszer found a very simple and
ingenious proof of this result; by his method one can easily show that for a certain ¢
and n > no(k) every &(n; kn + ¢) contains a circuit with at least k — 1 diagonals
emenating from a vertex. It is easy to see that ¢ = 1 — k2. Perhaps ¢ = 1 — k*?
For k = 2 this is Posa’s result, and I can prove it for k = 3 and k = 4 also.

Finally I proved that for every ¢ and r there is an ny = nfs, r) so that for every
n > nye, r) every G(n; [n?/4] + n(1 + €)) contains a circuit and r vertices not on
this circuit each of which is adjacent to every vertex of the circuit. It is easy to see
that this result does not hold for every &(n; [n?/4] + n).
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