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In this paper we investigate the following question. Let p be a prime, 
a,, “‘, cck distinct non-zero residue classes modp, N a residue class modp. 
Let 

P(N) = P(N;p; aI, . . . . a,$) 

denote Dhe number of solutions of the congruence 

ela,+... + ekak = N(modp) 

where the e,, . . . , ek are restricted to the values 0 and 1, What can be 
said about the function J?(N)? 

We prove two theorems. 
THEOREM I. 14”(X) > 0 if k > 3 (6;~)“~. 
THEOREM II. P(N) = 2kp-‘(1+o(1)) $ k3pS2 -+ 00 as p + co. 
Theorem I is almost best possible. Put 

al = ‘, ‘2 = -1, a3 = 2, a4 = -2, . . . . ckk = (Lx)k-‘[&(k+l)]. 

Then it follows from an easy calc.ulation that F(S(p - 1)) = 0 if 
k < 2 (p1/2 -1). Theorem II is best possible. Define CZ~, . . . , ak as above 
and assume that p2f3 < k = O(P’/~), Then it follows from our analysis 
that 

limp2-kp(0) > 1. 
p-too 

In the method of proof the two theorems differ considerably. The 
proof of Theorem I is elementary, depending entirely on the manipu- 
lation of residue classes mBdp, whereas the proof of Theorem II is based 
on the application of finite Fourier series and simple considerations on 
diophantine approximations. 

In an appendix we state various further conjectures which we are 
not able to prove. 
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Proof of Theorem I. We start with a definition. Let b,, . . . , bl be 
2 distinct residue classes modp. Then B(m) denotes the number of solu- 
tions of the congruence 

or: z bi- bi(modp), l<i<l, l<j<l. 

We recall the inequality 

(I4 B(‘x+ty) 3 -Z~+B(‘d+B(yl, 

which is easily pr0ve.d as follows. Assume that 

m = bi- bi(modp), y = b,-bb,(modp). 

If j = g, this implies that 

a+y = bi- bh(modp). 

As there are only Z possible values for bj, (1.1) follows. It can also be writ- 
ten in the form 

(I.2) (Z--B@+Y)) < (Z--BW)+(Z--B(Y)). 

LEMMA I.l. Let 1 < 112 < Z < Qp ; cc,, . . . , a, are distinct non-zero 
residzle classes modp. Then there eaists an i in 1 < i < k such that 

B(ai) < Z-&n. 

Proof. Put Y = 1+[2Z/m]. By Davenport’s theorem [l] about the 
addition of residue classes modp, applied to the residue classes 0, al, . . . , a, 
we obtain t >, Min(p - 1, rm) distinct non-zero residue classes cl, ..‘, ct 
which can be expressed as the sum of at most r residue classes ai (1 < 
j < m), which need not have distinct indices j. 

As 

iB(c,) <~B(B) = 1(1-l), 
S=l Pi=1 

it follows that there exists an s such that 

B(c,) < Z(Z--l)-K1 < Z(Z-l)Max((p--1)-l, (rm)-‘) < $Z, 
or 

Z-B(c,) > $Z. 

EIence, by (1.2), there exists an ai such that 

Z-B(ai) > +Zr-’ > i Zm(m+2Z)-’ > i m, 

which completes the proof of the lemma. 

Proof of Theorem I. We begin with a definition. If 

l<U<,<k 
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we consider all possible subsets i& of u elements of the classes 

al, a2, ...,azu-l, azu. 
For each subset A!!& we consider the number L(&) of distinct residue 
classes which can be written in the form 

ela1+...+e2,a2,, 
where 

I 

0 or 1 if ai lies in S,, 
ei = 

0 if ai does not lie in S,. 

Next we put 
L(u) = maxL(S,), 

where SU ranges over all subsets of u elements. It is easily verified that 
L(1) = 2, L(2) = 4, and that L(U) 3 u+2 for ti 3 2. It is also clear 
that L(zc+l) > L(U). 

Our next step is to prove the inequality 

(1.3) J(u$l) b -z;(u)+; CM+21 for 2,<&k--l 

provided that L(U) < &D . 
We assume that S, is the set for which L(S,) = L(w). Then we have 

L(zc) residue classes b,, . . . , bLIuj which are representable as linear com- 
binations of the aj in S, with coeffic,ients 0 or 1. We also have at our 
disposal. m = u+ 2 residue classes ai not in S, with 1 < i < 2u + 2, 
Lemma I.1 is applicable as 

m = zc+2 < L(u) < *p. 

So we obtain an i in 1 < i < 2u+, 2 such that ai not in S,, 

B(aJ < ;m 

We now define Sutl as the union of S,, and ai. Then, by Lemma 1.1, 

L(u+l) 3 ~(fL+J = L(u)+ (l--B(d) > L(u)+ j m 

which proves (1.3). 
By addition, it follows immediately from (1.3) that either L(zc) >, -$p 

or that u-1 
L(u) 2 4+ 2‘ ; (pz+2) >A (u+l)(u+2) 

n=2 

for all u < 8 k . Hence, putting t = [( 6p)“‘J, we have in any case 

L(t) >, *p . 

Further we may assume that S, contains a,, . . . , at. 
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We now apply the same argument to the 2t residue classes at+, , . , . , agt. 
Again a linear combination of at most t of them will represent at least 
half the residue classes modp. 

Thus we have 2 (not necessarily disjoint) sets each containing at 
least half the residue classes modp. From this it follows at once that 
every iV is representable as a sum of an element of the first set and of an 
element of the second set. This completes the proof of Theorem I. 

Proof of Theorem II. We start by introducing some notations. 
Small latin letters denote rational integers, and therefore by implica- 
tion residue classes modp. Small greek letters denote real numbers. 

.A =logp, p2’3<k<p, 

but until we reach Lemma II.5 it will be assumed that k < ~“~-4. The 
letter m with or without suffices will denote an integer in the interval 
$k < m < 7c‘. SI, is a given sequence of k non-zero distinct residue clas- 
ses modp, denoted by C-Q, . . . , ak. For some permissible Values of m we shall 
introduce subsequences Sti which we denote, without fear of misunder- 
standing, by a,, . . . , a,. 

For r + O(modp) we put 

O(I) = b(r, &) = ~sin’(xYaJp), 
?l=l 

y(r) = y(r, SW&) = o(r, s,)(m3p-2)-1. 

We note that r(r) > y0 > 0, where y,, is an absolute constant. For 
given S,,, we call r critical if y (r, S,) < fl. 

The symbol 0 implies absolute constants only. The symbol o refers 
to p + CO uniformly in all other variables, unless stated otherwise. 

If for Sk no value of r is critical, we take no further steps until we 
reach Lemma 11.5. Otherwise we define 

,U = Miny(r, J!&)(~~~+~--IwL), 

where we admit all residue classes r + O(modp), all m in &k < m < 7t 
and all subsequences S, of A!& containing m terms. For the remainder of 
the paper let s, m, S* be the residue class s, the number m and the sub- 
sequence ST;, for which the minimum is attained. 

As some r is critical for Sk, it follows that 

As 

we have 

p < Miny(r, S,)iP < A7. 
+0 

p 3 yow6+~--& 

yiJk-m+A6) < A7, ??a > k- y;w. 
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Further, for each subsequence AS’,, of 8, where m’ 2 ik we have 

LEMNA 11.1. I;& r + s(modp) be a critical value of 8,. Then there 
ed.st integers u and TJ such that vr E us (modp), (u, v) = 1, 1 < v < A, 
1 <u f AZ. 

Further, assuming that the residue clasees so, (1 < 12 < m) aye repre- 
sented by numbers in the interval [ - Qp, $p], these numbers are divisible 
by v with at most 2A5m3p-’ emceptions. 

Proof. Without loss of generality we may assume that 8 = 1 and that 
/ala/ < $p for 1 < IZ Gm. 

From Dirichlet’s principle it follows by a classical argument that 
we can solve the congruence vv = w(modp) subject to 

l<V<A, 1 d IUI <pAL1, (u,v) =l. 

We write 
vr = u+pp. 

Because s = 1 is critical, the inequality 

sin” (xa,/p) > 4Am2pU2 

has at most km solutions. Similarly, because r is critical, the inequality 

sin2 (xra,Jp) > 4Am2p-’ 

has at most $m solutions. Hence, for at least m* > Qm values of a, 
(SW a,, “‘f a,,) we have 

sin”(xa,/p) < 4Am2pe2, sin”(xra,/p) < 4Am2pP2; 

[a,1 < A112m, /ram--pg,l < A”‘m. 

The last inequality, multiplied with JU, gives 

luac, -p (vgusla- qan)l < A”2mv < A3”m. 
Putting 

hn = w,-- pan, 
this becomes 

(ZI.1) (ua,-ph,( < Ayzm. 

The sequence a, contains m* terms confined to the interval 
[ - A”%z, A1i2m]; hence it contains two terms a’, a” such that 

1 <a”-a’ < 2A”2m(m*-l)-’ < 4A1’2+o(l). 
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As by (11.1) for some h 

Iu (ii’ --a’)--phi -==c 2.A3”m = o(p), 

it follows that h = 0 since 

pll (u” -a’)] < ~zc~(4A”“+o(l)) < 4pA-““+o(p) = o(p). 

And F, = 0 implies 

Iul < IWJ” - u’) < 2A3j2m. 

If lzc] < .#, the first part of our lemma is proved. Eence we may 
assume 

(II.2) AZ < Iu( < 2A3”m. 

We now consider all integers of the form ux where (~1 < il”‘m. They 
contain the sequence ~a~,, 1 < n ,( my. 

We proceed to count how many of these 3: satisfy 

(11.3) [urn-ph,l < A312m 

for some suitable integer h,. If h, is fixed, the number of 5 in the inter- 
val (11.3) is obviously 

< 1+2 JuJ-%3’%n. 

On the ot’her hand, it follows from /m/ < LI’%L and (11.3) that 

[h ( < lulA’/2mp-‘+A3/2mp-1. 21 

Hence the number of II: in jz/ < A”‘rn satisfying (11.3) does not exceed 

(If 2 IuuJ-'Ay2m) (l+ 2 I’u/ 11’~2mp-‘+2~3%2~-‘) 

= 2 + 4Azm2p-l+ 2 IuI A’/2mp-’ + 4 lu/-‘A3’2m 

< 2 + 4A2m2p-‘+ 4A2m2p-‘+ 4Ae112m 

= o(m) < m*. 

As the set of tiz with (~1 c A”“m contains the set ucc,, with 1 < n. 
< m*, (11.1) is not true for all a < m*. Thus (11.2) is disproved, and the 
first part of our lemma is established. 

Next we note that h, = 0 implies v j CG,. We now return to our orig- 
inal sequence 8, and remove from it all terms for which either 

sin’ (ma/p) g3 fP4 or sin2 (nra,/p) >, AL4. 
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Then we have for the remaining terms 

IanI G x -‘A-‘p(lfo(1)) and If%-pgnl < x-‘n-“p(l+o(l)) 

or, after multiplication with V, using our previous notation, 

jua,-ph,] < ~-~A~‘p(l+o(l)). 
Eence 

PM ,< I%/+o(P) G (X-l+O(l))p .=c p, 

h, =o, 1) I 4%. 

The number of terms we have omitted is 

< A4(o(l)+ O(V)) < 2A5m3p-2. 

This finishes the proof of the lemma. 

LEMMA 11.2. v = 1 under the con&ions of Lemma II. 1. 
Proof. We have by Lemma 11.1 a subsequence kJs,, of Bs, represen- 

ted by a,, . . . . a,, say, such that 

m* >, m-2A5m3p-2, 

-Jp<sa,<&p, visa, for l<n<m*. 

For this subsequence we have 
we 

a(~-‘s) = 2 sin’(xsa,/(vp)) < vMzz (xsa,/p)2 
?L=l ?%=l 

m * 

< v-“(&rt)” 1 sin”(Xsa,/p) < (tv-%)“i sin2(xsa,/p) 
la=1 n=1 

= ($vI-‘r)2~m3p-2 < q*3p-2 

which for v > 2 contradicta the minimum definition of p as 

m” > m(l-2A5m2p-2) = m+o(m) 3 +k. 

LEMMA 11.3. 5!%ere es&ts an m, in the interval 

m - f121m3p-2 < m, < m 

ad a subsequence S,, of S,, say a,, . . . , amo, such that 

mo 

c sin’(xsa,/p) f A-‘pm3p-2. 
n=1 

Proof. From the series 
m 

u(s, h!!Jm) = C sin’(xsa,/p) < Am3pp2 
?k=l 
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we remove all terms for which 

lsin(xscc,/p)l > (1-l’. 

The number of terms removed is 

and 

m---m, < (n’“)2a(s, S,) < n2%n3p-* 

jj sin4 (x80,/p) < A-” 2 sin2(xsa,/p) 
?&=I ?I=1 

,< il-2ou(8, S,) < A-‘gm3p-2. 
LENMA 11.4. 

(11.4) u(s, &J = p”3p-2; 

(11.5) U(W, &) > ~~pn~p-~+O(A-~‘m~p-~) for 1 < lul <AZ, 

where llzo is defined by Lemma 11.3; 

(11.6) u(r, &) > Am3p-2 for the other r + 0 (modp), 

Proof. (II.4) follows from the minimum definition. (11.6) is a 
consequence of Lemma II.1 and Lemma 11.2. 

To prove (11.5) we note that for all a, t # 0, 

(11.7) sin2 (la) - t*sin’ (a) = 0 (t” sin4 a). 

(11.7) is true because for 0 < a < It\-’ 

sin’ (ta) = t2a2 + 0 ( t4a4) , tZsin’a = tza2+O(t2a4), 

whereas for It/-’ < a < QX 

sin2 (ta) < 1 = 0 (t” sin2 a) = 0 [t” sin4 a). 

From (11.7) and Lemma II.3 we obtain for t # 0 

cr(t3, S,o)-t2a(8, S,,) = o(t4n-‘9m3p-2). 

This gives (11.5) as 

dU8, &no) G dus, &rd, b(S, S,,) z pm:p-2. 

LEMMA 11.5. If pr = fi cos(xra,/p), then. 
n=1 

P-1 

c l/M = o(l) 
i-=1 

a8 p -+ 00, kp-‘l’ -+ 00. 
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Proof, We note first that if k < Ap2/39 then m and m, are defined 
and 

limmk-’ = 1, limm,m-l = 1. 
P-+x p--tm 

For r + O(modp) we have 

= (1 - m-lo (8j-, )Jm))“P ,( e-(1~2)0(rPm8)~ 

Hence if r is not critical for S,, (11.6) is applicable and 

l& < e-ww~3P-2 Gp4, 

as eventually m3pp2 2 4. 
If (11.4) is applicable, it gives 

l/j*1 = Ip-sl < ,-P/2W3/9 < e-w)Yo~3/~2 = o(l), 

whereas (11.5) if applicable gives for 2 < I-u] < A2 

This completes the proof of Lemma II.5 if k < Ap2/3 and if at least 
one r is critical for A!&. 

Otherwise, we still have for r + 0 (modp) 

ID? 1 < e- u/w~& . 

If k < Ap2/3 and no critical r exists, we have 

Ibl < e- (1/2)+,&d < e- WW3r2 < p-2 

eventually. Finally, if k 2 Ap213, 

'T(r,flk) >2 sW(xn/p) > 8 
c 

dp-= 

Xn<(k+l)/2 l<fi=C(k+ I)12 

and 
= g7C3p-2(1+o(1)) > &A” 

l&l < f.Tn3f3 < eh2’ = pe2 

eventually. This completes the proof of the lemma. 
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Proof of Theorem II. Put A = i a,. 
?L=l 

P-l k 

Then 

= p- 12” 1 eirilr(A- ZNIP~~, 

P=O 

P-l 
p(iv)-p-12kj <p-'2'1C I/YpI = tqp-'2") 

T=l 

by Lemma 11.5. This proves the theorem. 
Finally, if k is even, lp2j3 < k < O(P’/~) 

a, = 1, a2 = -1, a3 = 2, a, = -2, . . . . ak-1 = &k, ak = -ik, 

then A = 0, /$ > 0. Hence 
P-1 

F(O) =p-12"(1+C fir) >p-12k(1+A). 
T=l 

An easy calculation shows that 

k/Z 
81 =fl 

cos2(,4p> - e-@V’r2k3f’-2, 
T&=1 

which does not tend to zero. This shows that Theorem II is best possible. 

Unproved Conjectures. 
CONJECTURE 1. It is possible to re(place the colzstalzt 3. 6112 in Theo- 

rem I by the constalzt 2. 
This is fairly plausible. Let S*, be the sequence 

a1 = 1, a, = -1, a3 = 2, a4 = -2, . . ., ak = (-l)k-l [j(k+l)] 

and let G(Sk) be the number of residue classes N for which 

F(N;p; k!!?k) = F(N;p; al, . . . . ak) > 0. 
. 

Then we can state 
CONJECTURE 2. G(Bk) 2 G(S:) for all k 3 1. 
This would of course imply Conjecture 1. 
For composite moduli Theorem I and II cease to be true. It is how- 

ever reasonable to formulate 
CONJECTV~~E 3. F{O) > 0 for k > 2p112, where p is %ot necessarily 

a prime. 
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This conjecture may also be true for finite abelian groups of com- 
posite order p, and possibly even, mutatis mutmdis, for non-abelian 
groups. 

Finally we mention a more complicated, but probably easier problem. 
CoNmcrunE 4. Let n, s, E,, . . . . 1, be positive integers, such that 

‘I,+...+& =n. Let ay) (1 <ads, 1 <,(1 <I,) be n residueclasses modn 
such that at) + a:) (modn) for 1 < ,u < il < (r . !L’hem there exists a non- 
void subset !I’ of the integers 1 < 0 < s, such that for (r in T we cam choose 
a A( a) in 1 < 1 < 1, with the effect that 

21 a ‘$, = O(modn). 
OinT 

As the paper goes to press Dr Flor informs us that Conjecture 4 fol- 
lows from a recent result by P. Scherk [2], We also want to draw the 
attention of the reader to a theorem by P. ErdGs, A. Ginzburg and A. Ziv 
[3] which states that each set of 2n- 1 integers contains a sub-set of 
rz integers, the sum of which is divisible by tin. 
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