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On Some Problems of a Statistical Group-Theory. I 
BY 

P. ERDBS and P. TURIN 

1. By statistical group-theory we mean the study of those properties of certain 
complexes of a “large” group which are shared by “most” of these complexes. 
The group considered in this paper will be &, the symmetric group of n letters; 
its group-elements will be denoted by P. The complexes considered here will be 
simply the elements P of 8, ; the property in question will be the group-order 
O(P) of P. As to this LANDAU proved (see [a]) for 

G(YL)~Z = max O(P) 
PCS” 

the asymptotical relation 

(1.1) lim log a(n) _ 1 
n+m L’nlog n 

On the other hand P’s of order as low as n are “many”; all P’s consisting in the 
canonical cycle-decomposition of a single cycle (of length n) are of order n and 
their number is 

(14 (n-l)! = ; n!, 

which is relatively large. The big contrast between (1.1) and (1.2) would sound a 
bit discouraging as to a simple law of the distribution. Nevertheless we are going 
to prove the 

Theorem. For arbitrarily small positive E, 8 and n > no(.s, 8) the inequality 

,(1/~-8)106~12 2 O(P) 2 ,w+e)los*w 

holds, apart from 
6 n! 

exceptional P’s at most.* 
The value el~z*Os*Rfalls surprisingly short compared with LANDAU’S upper bound 

in (1.1). We entertain hopes to prove in the next paper of this series that for the 
number iV(n, t) of P’s satisfying with an arbitrary fixed real t the inequality 

(l-3) log 0 (P) 5 6 log2 n + t 1092 n 

the limes-relat,ion 

(1.4) 

holds and even with a sharp remainder-term uniformly in ?L a’nd t. Also t’he case 
will be of int zrest when t varies strongly with n, e.g. t = G4, 

* Actually a bit more; see (7.1) and (14.3); with a little more care our proof had given 
even the inequality ] log 0 (P) - + log” n 1 =( w(n) lo@2 n with o (TL!) exceptions at’ most if 
only w  (ti) -+ CO wit,h n,. 
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2. Which resnhs were known in this theory ? Quite a few only, as far as we 
know. S. CHOWLA, HERSTEIN and MOORE (see [I]) for d = 2, and L. MOSER and 
WYMAN (see [5]) for d = p (= prime) proved that denoting by fd (n) the number 
of P’s in S, with O(P) = d, the relation 

(2.1) 

holds for fixed 1, and n --f co. We were unable to deduce our theorem from (2.1). 
This is the only one which is directly related to our theorem. In our proof of it 
we needed informations concerning the distribution of the cycle-lengths in the 
canonical decomposition of the P’s; so we found that, denoting the number of 
cycles by g(P), then - apart from o(n!) P’s* - we have 

(2.2) g(P) * log 12 . 

After having a ready manuscript we learned that this theorem was found first 
by V. L. GON~AROV (see [2]) in 1944 already, even in a sharper form, Actually 
what we need is not (2.2) but the corresponding theorem for k(P), the number 
of the difjeqerent cycle-lengths; also here the value log n is surprisingly low since 
the best-possible limitation, one can give for all P’s, is the inequality 

(2.3) 15 k(P) S 
-1+$l/sn+1 

2 

This sharp preponderance in various problems seems to be characteristical to 
this theory.** 

LANDAU’S theorem in (1.1) gives at the same time the asymptotical maximum 
for the order of cyclic subgroups of S,. Our theorem does not answer to the 
na,tural question, what is the ,,preponderating” order of non-iscnmrphic cyclic 
subgroups of S, ; perhaps not even the number of non-isomorphic cyclic subgroups 
of S, is known. To all these and several other questions of the same sort we hope 
to return in this series. 

We also call the attention to the last sentence of this paper (though we do 
not formulate it as an independent theorem). 

As pointed out by W. H. H. HUDSON (see ROUSE BALL [YJ in devising card tricks by 
repeating the same shuffling procedure we encounter again problems on the orders of the P’s. 
So using full pack of 52 cards having bad luck in selecting the basic shuffling procedure we 
can need G (52) = 180,180 shuElings to come back to the original position of the cards. 
According to our theorem we need with large probability only 

e l/2 lo@ 52 N 2&30 

shuffhngs. 

The proof of the theorem will be given in several stages. In Part I. we shall 
deal with k(P), in Part II. we give the proof of the upper bound, in Part III. 
that of the lower one in onr theorem. 

The different cycle-lengths in the canonical cycle-decomposition of P will be 
denoted throughout by 

(2.4) (l~:)n1<722C...(nk(P)=nk~~?z 

* The o-sign refers throughout this paper to n + m. 
** Somewhat in the same direction lies the paper of ERD~S-SZEKERES on the mean-value 

of v(n), the number of non-isomorphic Abelian groups of order n. See ERD&&EKERES [Z]. 
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the number cycles of length ?a, by my so that 
k(P) 

(2.5) c myny=n 
tJ=l 

and 
k(P) 

G-1 p=m. 

The dependence of k(P) p u on P will not be denot’ed explicitly later; cl, c2, . . . 
stand for explicitly calculable positive numerical constants. 

Part I 

3. We shall state GON&ROV'S theorem as 

Lemma I. For any fixed real t for the number h,(t) of P’s satisfying (see (2.2)) 

g(P) Ilogn+tI/logn 
we have the relation 

(3.1) lim -1_h,(t) =& j”k-A2~zd,. 
n+cc n! ---a0 

Applying the wellknown theorem of ESSEEN one could replace the limes- 
relation in (3.1) by a formula with error-term. We shall use lemma I in the follo- 
wing weaker form. 

Corollary I. If o(n) tends to infinity arbitrarily slowly monotonically then for 
all but o(n!) P’s the inequality 

Ig(P)-log?&] lo(n)~logn 
holds, 

We state the following wellknown result (see e.g. R~ORD~N [S]) as 

Lemma II. The nunzber of P’s with fixed 

k,ml,..., mk,nl,..., nk 
(see (2.4), 2.5)) is 

n! 
ml!mZ!...mk!n;^ln~s...nlE”L ’ 

Let WI and 0s be positive integers with 

20~~01, co229-2 

and HI be the set of P’s with the following properties. If ny r w1 then 

(3.2) 1 ~rn,~:2; 

if 71, > 01 then 

(3.3) my = 1. 

This n1 is the set of P’s in which only “short” cycles can occur more than once 
and even these “not too often” . Denoting the number of P’s of fl1 by 11711 we 
assert the 

Lemma III. The inequality 

holds. 
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For the proof we remark first that A 1 n r is nothing else than the coefficient 1 

of zn in 

(3.4) g(l+z~l;(:jiJ. fi+J1+5)* 

The vth factor in the first product can be written as 

and analogously for the second product. Since for 

fi $“:v = 1 ; z ) 
v=i 

IzI < lwehave 

the product in (3.4) can be written for 1 z 1 < 1 as 1 y i Q(z), where 

Equating the corresponding coefficients we get 

Replacing in (3.5) in each factor in curly brackets the term 

--e -Z”,b b>, $“/* 

we obtain instead of 9 (z) a function Q* (z) whose coefficients (are positive and) 
majorise the absolute values of the corresponding coefficients of Q(z). Hence 

f! JJlI - 1 [ 5 2 coeffs. zjl kn Q* (2) < Q* (1) - B* (0) 

(3.6) 
p=l 

zzz - 1 + fi 1 + 
V=l { 

Here the first product is 

and analogously the second is 

From these a’nd (3.6) we get 

1 I_ 1) 2 _ 1 + e15/(o,+1u t S/WI 

as stated. 
This lemma gives immediately the following three corollaries. 
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Corollary II. If 01 (n) and 02 (n) tend arbitrarily slowly monotonically to co, 
then the canonical decomposition of all but o(n!) P’S have the double property that 
no two cycles of length > ~01 (n.) are equ&y long and at most ~02 (n) cycles cun have 
the same len3th 5 WI(~). 

Combining this corollary with Corollary. I. we get the 

Corollary III. Apart from o (n!) P’s the remaining ones, whose totality we may 
call fl2) have the properties of Corollary 1‘1. and 

(3.7) Ik(P)-IognI <CO(TL)VToCl;n 

if only co(n) tends to 03 arbitrarily slowly. 
Though we shall not need it here, we formulate the 

Corollary IV. For all fixed real t’s for the number Hn (t) of P’s satisfying simul- 
taneoudy (3.7) and the two requirements of Corollary II. we have the limit-relation 

As well-known, the order of P is given by 

(3-W O(P) = [111,n2, . . . . n*] 

the bracket stands for the snmllest common multiple, 
Corollary II. gives for arbitrarily small E > 0 at once for all but o (n!) P’s the 

inequality 

(3.9) 0 (P) 5 n1, n2 . . . nk < nk < et1 + ‘1 log2 n . 

But this is much weaker than the upper bound in our theorem. 

Part II 

4. In order to prove the upper bound in our theorem we shall show that if 
<tii(n) tends to 00 monotonically arbitrarily slowly, then for all but o (n!) P’s 
the n,-numbers (in (2.4)) are in a certain sense equi-distributed in the interval 
1 2 5 5 n. More exactly we mean the following. We define N by 

(4.1) N = [F/3]. 

For each P E n2 we can determine uniquely the nonnegative integers 

(4.2) '%r&2,-..,sN 

so that 

(4.3) 
1 5 nr < ?Ls < --- < fi3, =( nliN < nsl+l < *a- < nsl+Sa 2 nsiX < 

-=I nSltSa+l< ~~~<1~~~+,~~+...+~~=n~47~; 

if t’here is no ng e.g, in nils < x 5 n21N we have Ss = 0 etc. 
Of course S, = S,,(P) and 

(4.4) 81 -I- sz + *-* + s-v = I?. 
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Let ns mean the subset of no whose P's satisfy the inequality 

(4.5) 

and let Ins] be the number of its P’s. Then we assert the 

Lemma IV. 

b. For the proof of this lemma it will be sufficient to show that if El stands 
for the subset of nz for which (4.5) is false, i.e. the inequality 

(5.1) max 
p=1,2,...,N 

; 8, - “’ > ($)“‘” 
4 

holds, and ] El ] for th e number of its P's, then the estimation 

(5.2) ; I& 1 < qmIme-l/510Pn 

holds for r~ > cl (of course wr (n) must be < l/10 log*/5a say). 

In order to prove (5.2) we write, using lemma II. 

where j = j(P) denotes the number of different cycle-lengths not exceeding cur (n). 
We can perform easily the summation with respect to 

m,mz>...,q; 

this cannot exceed the quantity 

and hence 

(5.4) 

where the prime indicates that the summation is extended to all n,-systems with 
properties (2.4) and (4.3)-(5.1). Since for n. > cs we have 

2 log n > log n + 0 (12) I/log n 2 k 
and from (2.4) 

2nplogn~krlk~~ra,=n--((m,.-l)n,~n--w:w2>~ 
v=l V=l 

we get 

(5.5) 

and hence 
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where 2” refers to the systems 

(5.7) l~nl<nZ<“+<nk-l<n 

restricted by (4.3)-(5.1). 
Let us consider now for a fixed k the quantity Sk. We have 

Sk5 2’ 2 s1,...,s.v 
( 

llTLl< nGG+t.. +,zs +1< nst+l ..!nsl+, 
<.~.<.ns,5n’l” )i <-as,+~,~n~~~~ 

. . . 

i 

c 
1 

n”-‘l”~n~,+...+s,_,~1<: "S1+Ssf...fSN-l+l~..~h--l 9 
<--*<nx-l$n 1 

where the prime indicates that (5.1) must be satisfied. Hence 

Since for n > c3 

c ++ogn+1, 
@-UN< * < nY,N - 

(4.4), (5.8) and (5.6) g ive, changing also the order of summations, the inequality 

(5.9) +ll < 4’U1+:10gn * ; 
( -$ogn+ l)* 

k! -sl C’ &!s2:j,&! . 
,.a., SN 

6. Now we estimate the inner sum in (5.9) using (5.1). If e.g. p = 1 this 
can be written as 

But for n > ca the last sum, owing to the law of large numbers cannot exceed 
the quantity -(k/N)9”0 

y&F se- 

l/2 r= &. / e--1/3 kW 

-co 

The same holds for p = 2, 3, . . I, N too; hence (5.9) gives the estimation 

qrol+ 3 log2 n 
$lEll < n 

* 3 
(log n + (2 log.n)‘/3)k k! = 4ozf3 e;“4’oT?. ne(elogn)~/~ ( 4”‘. e-l,j~ogz,sn 

for n > cg, which proves lemma IV. 
7. Lemma IV, gives the possibility to improve (3.9). We get this time 

0 (P) 5 121 n2 I , , nk 5 (nl’N)sl (n2!N)Sg . . . (nZNIN)Sx 2 n(N+1)/2 “,“” sP 

and owing to lemma IV. 

0 (p) g nW+1)/2 (k/N+ (k/W9 < ak/2fk4/5N1J5 
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for n > c6 which is only another form of the a,ssertion, [even with 

(7-l) 0 (p) 5 ei/210gzn+2(loga)28/‘5 

for all but o(n!) P’s). 

Part III 

8. Before turning to the proof of the lower bound we need some further lem- 
mata. Let U(m) stand for the number of different prime-factors of m, further 
Q(m) resp. y(m) for the maximal resp. minimal prime-factors of m. Then each 
integer m 2 n can obviously uniquely be decomposed in the form 

(8-l) m. = a (WL) b(m) 

where 

(8.2) Q (a (m) ) 5 loge 7~ 

(8.3) q(b(m)) > logs%. 

Let further be R the set of integers defined by 

(8.4) m 2 n, a(m) 2 e(loglog~~)4. 

Then we assert the 

Lemma V. Par n > CT the inequality 

2 ‘Q& 
meR a(m) 

holds (the summation being extended only to diflerent a (m)-values!). 

9. For the proof of this lemma we split our sum in the form 

(9.1) c 
WZE R 

$j+ c 2 $p!kfJG+Kz. 
Z>loglogn msR 

U(m) 5 1oglogn U(m) = I 

The inner sum in Kz is evidently for n. > cg 

sl’! xf’ i 1 
< + (2logloglogn)” . 

p s;P& n 
and thus 

(9.2) K2 -=c 2 1 

l>loglogn 

A (2 log log log n)l ( e-1~210~10~n’o~‘o~10~la < 2loglo. 

As to K1 let us observe that each term of it contains, as factor, a “large” prime- 
power, Namely if t is the maximal exponent in a(m), then owing to (8.1) and 
(8.4) and U(m) 2 log log ?L we have 

(log6 n)~k%lW~ 2 @‘Xl’X~)’ 

i.e. 

& 2 $ (log log 12)s , 

Thus all m-values of Kl are divisible by a prime-power @ satisfying the inequalities 

(9.3) 2i/6(10g10gn)6 $ pt 4 n , p 5 logs n . 
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Fixing this it the contribution of the terms divisible by this pt is (roughly) 

Tcp -t 2 J; <3iogn+p-t 
m5n 

i.e. K1 <2lognxp-t 

where the summation is restricted by (9.3). Since the number of terms is 

logn <~.log~?~<2log'n 

(9.3) gives for n > c9 

K1 < 2 log 11, . 2 log’ n . 2-1’6(10~‘os7~)a < %kiG . 

This, (9.2) and (9.1) prove lemma V. 
10. Next let n4 be the subset of ns (defined before lemma IV.) with the 

additional property 

(10.1) &((+,nd) 510g6n 

for each 1 s ,U < Y 5 k - 1 pairs and In4 1 be the number of its P’s. Then we 
assert the 

Lemma VI. The rebtior~ 

;m_&irrtr =I 
h.olds. 

In other words for almost all P’s, in addition to what was previously said, no 
pair n.,,, nny (1 s ,U < v 2 k - 1) have “large” common prime-factors. 

11. The lemma will obviously be proved if we can show that, denoting by Ez 
the subset of ns whose elements have the property 

(11.1) max & ( (rbp, n,) ) > logs n 
lS.u<VS&-1 

and denoting by 1 E2 1 the number of its P’s, the inequality 

(11.2) 

holds. For the proof of this assertion we can start from (5.6) in the form 

(11.3) $IE21 <~“‘ln)t’+ 2 
Ik-log,nl Il0g3/% 

where 2”’ refers beside (5.7) also to the restrict,ion (11.1). Fixing the ,u, v pair in 
(11.1) as k-2, k-l say 

the corresponding part of the double-sum as (11.3) is 

13 Z. Wahrscheinlichkejtstheorie vem. Geb., Bd, 4 
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Summing for all p, v-pa,& we get for c “’ the upper bound 

Summation with respect to k gives from (11.3) 

&E21 <e*.G;n.en<~ 

as stated. 

12. We have to make a final selection from n4. For all of its P’s we form 
their canonical decomposition and for all n, cycle-lengths the decomposition (8.1) 

(12.1) nv = u W b bb) 

(a(+), b(ny) functions of P) 

shortly. Let nr, be the subset of n4, for whose P’s the inequality 

max a. (n,) =( e(10slosa)4 
V=l ,...,k-1 

holds. Denoting by 117s 1 th e number of these P’s we assert the 

Lemma VII. The relation 

holds. 
By other words for almost all P’s, in addition to what was previously said, 

the contribution of the %ot too large” prime-factors of the P’s is “not too large”. 

13. Again the lemma will be proved if we can show that, denoting by Es the 
subset of n4 whose elements have the property 

(13.1) 

and denoting by [ E3 1 the number of its P’s, the inequality 

(13.2) 

holds. 
For the proof of this assertion we can start again from (5.6) in the form 

(13.3) &w <4”““~ c c* ,,.,.t.,, 
k 

where 2 * means that in addition to the properties of n4 also (13.1) is fulfilled. 
We split the inner sum (13.3) into k partial-sums, the ,&h of which replaces 
(13.1) by 

(13.4) u (Q) > ewogn)‘~ 

First we perform the summation with respect to the nj’s with j + ,U ; this gives 
at most 

(1 + log q-2 
(k--2)! - 
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Next we perform the summation with respect to np but taking in account (13.4). 
Fixing a va,lue for a (n,J the corresponding +‘s contribute to our sum by 

at most ; thus 

Using lemma V. this is 
< y (1 + log ,)&-a 2 .- 

7 (k-2)! log9 n * 

Summing with respect to ,JJ gives 

2 * < & . (1 + logNk--” . 
(k - 2)! 

Putting this in (13.3) we get 

&p31 <g&T&; (l+logn)k-2(c& 
(k - 2)! 

which proves lemma VII. 
14. Now we are in the position to establish the lower bound in our theorem. 

According to lemma VII. apart from o(n!) P’s the remaining ones have the 
following properties (or(n), ws (R) and co(n) equals l/log log n e.g.) 

a) 1 k(P) - logn) 2 o(n)l/logn 
b) no two +cycles of length 2 car(n) in P have the same length 
c) at most 0s (n)-cycles in P can have the same length 2 co1 (n), 
d) the different cycle-lengths in P are “equidistributed”in the sense (4.3)- (4.5) 
e) no np, n,, pairs (15 p < Y s k - 1) have a common prime-factor > logs n, 
f) for all nny cycle-lengths the contribution of the prime-factors not exceeding 

logs n cannot exceed exp. ( (log log n)4). 
For these P’s we have smith the notation (8.1)-(8.3) the inequality 

(14.2) O(P) 2 
nlnz...nk 1 - ~ 

a(nl) a(4 . . . a(nk-1) n . 

But owing to properties f) and a) 

a (nl) a (n2) . . . a (at-1) 5 e(10g10ga)4210gn 

we get for the remaining P’s, i.e. for all but o(n!) P’s 

(14.2) 0 (P) 2 nl n2 . . .71x * e-310@(10g10~n)4 . 

13" 
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The lower bound will be est.ablished a.t once using property d). This gives 

nameIS 

nl ,n2 . . . nk 2 (,,l/S)S% (&V)S3 . . . (,,w-lw)s.V 2 n(AT-l)/2 my/,* 

But from (4.5) 
mhS >L- A415 

P @ - N t ) N 
i.e. 

nl 1~2 . ‘, nk > ~k/2-224/5T.T1/5 > &210g~n-310g”w+ 

which establishes the upper bound for n > ~10 (even with 

(14.3) (J ($3) > e1/210g2n-410g281’5n 

for all but o(n!) P’s). 
Finally we remark tha,t what we actually proved (see (14.2) and (3.9)) is that 

apart from o(.)L!) P's the inequality 

(14.4) e--310gn(loglognp < ~ O(P) < 1 
= nlnz...nx = 

holds i.e. 0 (P) is “essentially” nl n2 . , . ?Lk , for “almost ati” P's. 
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