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Let @; << @, < -+ be an infinite sequence of positive integers. Put

A= X 1.

ap=x

We say that the sequence has positive density if lim,_., A(x)/x exists and is
positive, the definition of lower (upper) density is self-explanatory. We say
that the sequence @; < -** has positive upper logarithmic density if

. 1 1

lim sup s 2‘, =50, (n
Behrend [1] and Erdés [2] proved that if (1) holds then there are infinitely

many pairs of a's satisfying a; | a;; and, in fact, Behrend proved that if

2 —l—-‘b logx (2)

~ ¢ .
ajce % (log log x)'/2

holds for a sufficiently large ¢ and infinitely many x, then a; | a; has infinitely
many solutions. Recently [3], we proved that if @, < -+- is an infinite sequence
no term of which divides any other then

1 ¢ logx
2.2 = (o) ()

Davenport and Erdés [4] proved that if (1) holds, then, there is an infinite
subsequence a; , a; | a . but the following question remained open [5].
Let a; < -+ be a sequence of positive lower density is it true that there are
infinitely many triples of distinct a’s, a;, a;, a,; a4/, 4/, a,’ satisfying

(ai.'! aj’) i ar’! [ai 3 af] = &, (4)

where (g;', ;') is the greatest common divisor and [a;, a,] the least common
multiple.
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In the present paper we will answer these questions affirmatively. In fact,
we shall prove the following stronger (e, ¢, , ¢, , *** denotes suitable positive
absolute constants).

THECREM 1. Let ay << a, <<+ be an infinite sequence of integers for which
there are infinitely many integers ny < m, < -+ satisfying

2 1 log m, ‘ (5)

B e
= @, 1 {loglog m) ™

Then the equations (4) have infinitely many solutions.

We will easily deduce Theorem 1 from the following combinatorial result
of Kleitman [6]: Let S, be a set of #n elements, and 4,;, 1 </ <7,
r > ¢, 2*n!/? are subsets of S. Then there are two sets of triples of distinct
As, A, 4;, A5 A, A/, A/, satisfying

A, VA, =4, A'nA4; =4,

Before we heard of Kleitman’s paper we obtained the same result with
r = ¢ 2" log log n/log n, this would give instead of (5),

¢, log n; log log log log n./log log log n;, .

We supress our proof, since it gives a much weaker result and was more
complicated than the proof of Kleitman.

Now we deduce Theorem 1 from the result of Kleitman. We only con-
sider the equation [q, , a;] = a,, (&/, @) = a,’ can be dealt with similarly.
Write

a; =r2b;,  b;square-free. (6)

The representation (6) is clearly unique. From

ot o

2
r=1 6

~

and from (5) and (2) it easily follows that there is an » and a subsequence
a;, with r; = r and infinitely many values of m for which

1 1 log m )

5, ~ 2 “{loglogm)iR”

b o<=m i

It clearly will suffice to show that (7) implies that
[bu bl = by (8)
is solvable, since by a = % (8) implies that (4) holds.
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To prove (8) denote by d,,(k) the number of divisors of £ among the &'s.
By (7) we evidently have

I log
> i — 2[ ] mY o BT T gy O

fom=1 by -c.m

If V(%) < log log m (V(k) is the number of distinct prime factors of &) then,
since all the &, are square free, we evidently have

dp(k) < 2loglogm, (10)
Thus from (9) and (10} (the dash in the summation indicates that
V(k) = log log m)

log m

Wz m 2loglogm

1 log m
= B4 (log‘]u:agm)Lf2 an
We evidently have
d(k) < 2mlog m.
k=1

Thus by (11} there clearly exists an integer k satisfying

V(k) = log log m (12)
and

;{16 (13)

) = 4O flog og my
Without loss of generality we can assume that this % is square-free, since all
the &’s are square-free. Thus from (12) and (13), we obtain

6,/16
(log log V(R

Hence, finally, from (14) with Kleitman’s theorem (putting V(&) = n,
¢; > 20¢,) k has three divisors b, , b, , b, satisfying (8); hence the proof of
Theorem [ is complete.

d(k) = 2Vt - (14)

THEOREM 2. Let ay << **- be an infinite sequence of integers for which there
are infinitely many integers ny < -+ satisfying

¢ 1 log n;
2 2> (g Tog m)e

ag<ny &%
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Then there are infinitely many quadruplets of distinct integers a; , a; , a, , a, satis-
fying
(@i, a;) = a,, (a;,a;] = a,.

We supress the proof of Theorem 2, since it is similar to that of Theo-
rem 1; only we here use the following unpublished result of Kleitman: Let
A;CS, 1 <i<r, r >c,2%/n** (S has n elements). Then there are four
distinct A’s, say A4;, 4;, A, , A., satisfying

A, VA, =4, A;nA;=4,.

Now we show that Theorem 1 is best possible (except for the value of ;).
In fact, we shall show that there is a sequence @, <C @, << -+ satisfying for
every x > x,

and such that
[a;,a] =a, (16)

is never solvable in distinct integers. (We remind the reader that if (2) holds
for infinitely many x, then g, |a; has infinitely many solutions; but, of
course, [a; , a;] = a, is much harder to satisfy than a; | 4;.)
We define the sequence of square-free integers a; << g, << - as follows:
Put exp = = ¢*. Let expexp 2k <<n << exp exp (2k - 1), then n is an a
if and only if V(n) = 2k and » is odd. If

exp exp (2k + 1) << n < exp exp (2k + 2),

then n is an a if and only if ¥(#) = 2k and = is even, It immediately follows
from the results of [7] that our sequence satisfies (15). To complete our proof
we show that (16) is not solvable. If [a;, ;] = &, then since

V(a,) > max (V(a;), V(a;)), (17
we have from the definition of the a’s:
[log log a,] > max ([log log ,], [log log a,]).
On the other hand, from «;e; < 4, and the definition of the a’s we have
[log log a,] < 2 -+ max ([log log a;], [log log a,]).
Thus
[log log @,] = 1 + max ([log log a;], [log log 4;]). (18)

From (17), (18) and the definition of the a’s, we obtain by a simple parity
consideration that (16) has no solution, which completes our proof.
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One would expect that there exists a sequence satisfying (15) for which
(a; , a;) = a, is never solvable in distinct integers, but we have not been able
to show this.

Perhaps the following result holds: Let a, < -'* be a sequence of positive
upper logarithmic density, then there is an infinite subsequence a 5 4, ,
so that the least common multiple of any two ¢; ’s is again an a (not necessarily
a member of the subsequence &; ). To show this it would suffice to show that
if @, << @y << -+ has positive upper logarithmic density, then there is an g, ,
so that the set of a;'s for which [a;, 4;] is again an @ has positive upper
logarithmic density. We can not decide these questions even if we assume
that the a's have positive lower density.

Finally, we remark that for every ¢ > 0 it is easy to construct a sequence
of density > 1 — e for which &, - @; = a, has no solutions, but if the sequence
has upper density 1 there always is an infinite subsequence a; , 1 <j < 0,
so that all the products ] aj, e = 0 or 1 are a’s (only a finite number of
;s are 1).
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