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Let a, < as < **. be an infinite sequence of positive integers. Put 

A(x) = c 1. 

We say that the sequence has positive density if lim,=, A(x)/x exists and is 
positive, the definition of lower (upper) density is self-explanatory. We say 
that the sequence a, < m-1 has positive upper logarithmic density if 

Behrend [1] and Erdijs [2] proved that if (1) holds then there are infinitely 
many pairs of a’s satisfying ai 1 a,; and, in fact, Behrend proved that if 

z Lc 
log X 

ai<” af (log log *+a (2) 

holds for a sufficiently large c and infinitely many X, then ai / ai has infinitely 
many solutions. Recently [3], we proved that if a, < .a* is an infinite sequence 
no term of which divides any other then 

Davenport and Erdk [4] proved that if (1) holds, then, there is an infinite 
subsequence ai,; , air j aik+l , but the following question remained open [5]. 
Let a, < .*. be a sequence of positive lower density is it true that there are 
infinitely many triples of distinct a’s, ai , Uj , a,; Q’, a,‘, a,’ satisfying 

(q’, a;> = a,‘, [q , 4 = 4 > (4) 

where (a,‘, a,‘) is the greatest common divisor and [ai, a,] the least common 
multiple. 
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In the present paper we will answer these questions affirmatively. In fact, 
we shall prove the following stronger (c, c1 , c2 , .** denotes suitable positive 
absolute constants). 

THEOREM 1. Let a, < a, < *.. be an injinite sequence qf integers for which 

there are injnitely many integers n, < n2 < .-- satisfying 

Then the equations (4) have infinitely many solutions. 

We will easily deduce Theorem 1 from the following combinatorial result 
of Kleitman [6]: Let S, be a set of n elements, and A, , 1 < i < r, 
r > c2 2”ln1J2 are subsets of S. Then there are two sets of triples of distinct 
A’s, A, , A,, A,; Ai’, A:, A,‘, satisfying 

A, u Aj = A,, A,’ n A,’ = A,‘. 

Before we heard of Kleitman’s paper we obtained the same result with 
r > c 2% log log n/log n, this would give instead of (5), 

cl log n, log log log log n,.log log log nk . 

We supress our proof, since it gives a much weaker result and was more 
complicated than the proof of Kleitman. 

Now we deduce Theorem 1 from the result of Kleitman. We only con- 
sider the equation [a, , aj] = a, , (a,‘, a,‘) = a?’ can be dealt with similarly. 
Write 

a, = ri2bi , bi square-free. (6) 

The representation (6) is clearly unique. From 

and from (5) and (2) it easily follows that there,is an r and a subsequence 
aij with rii = I and infinitely many values of m for, which 

L>L, 

bi% bG 

log m 

2 ’ (log log m)l/* ’ 

It clearly will suffice to show that (7) implies that 

is solvable, since by a = r2b (8) implies that (4) holds. 
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To prove (8) denote by d,(k) the number of divisors of k among the b’s 
By (7) we evidently have 

(9) 

If V(K) < log log m (V(k) is th e number of distinct prime factors of k) then, 
since all the bij are square free, we evidently have 

d,(k) < 21og1ogm. w 

Thus from (9) and (10) (the dash in the summation indicates that 
V(k) > log log m) 

2’ d,(k) > ; clm (*o;poggm,)l~2 - m ZlO@@~‘~ 
k=l 

log m 
> $ ‘lrn (log log rn)rP ’ (111 

We evidently have 

z d(k) < 2m log m. 
k=l 

Thus by (11) there clearly exists an integer k satisfying 

V(k) >, log log m 
and 

Without loss of generality we can assume that this k is square-free, since all 
the b’s are square-free. Thus from (12) and (13), we obtain 

d,(k) > Zv’k:’ - Cl/l6 
(log log V(k))l/z ’ 

Hence, finally, from (14) with Kleitman’s theorem (putting V(k) = 12, 
cl > 20~s) k has three divisors b, , b, , 6, satisfying (8); hence the proof of 
Theorem I is complete. 

THEOREM 2. Let a, < a-* be an infinite sequence of integers fm which there 

are injkitely many integers 7tl < -** sattifp’ng 
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Then there are in@itely many quadruplets of distinct integers ai , ai , a, , a,7 satis- 

fring 
(ai , a$) = a,, [a( , aj] = a, . 

We supress the proof of Theorem 2, since it is similar to that of Theo- 
rem 1; only we here use the following unpublished result of Kleitman: Let 
Ai C S, 1 < i < r, Y > c, 29 II4 (5 has n elements). Then there are four 
distinct A’s, say A, , A, , .4, , -4,? , satisfying 

Ai LJ Aj = A,, A, i-i Aj = A,. 

Now we show that Theorem 1 is best possible (except for the value of cr). 
In fact, we shall show that there is a sequence a, < a2 < **a satisfying for 
every x > X, 

and such that 

is never solvable in distinct integers. (We remind the reader that if (2) holds 
for infinitely many 5, then aL / a, has infinitely many solutions; but, of 
course, [ai , ai] = a, is much harder to satisfy than ai 1 aj.) 

We define the sequence of square-free integers a, < a2 < *em as follows: 
Put exp z = ez. Let exp exp 2k < n < exp exp (2k + l), then n is an a 

if and only if V(n) = 2k and n is odd. If 

exp exp (2K + 1) < n < exp exp (2k + 2), 

then n is an a if and only if V(n) = 212 and 72 is even. It immediately follows 
from the results of [7] that our sequence satisfies (15). To complete our proof 
we show that (16) is not solvable. If [ai , aj] = a, then since 

W4 > max (Wad, W4), (17) 

we have from the definition of the a’s: 

[log log ar] > max ([log log ai], [log log ai]). 

On the other hand, from azaj < a, and the definition of the a’s we have 

[log log ap] < 2 + max ([log log a,], [log log a,]). 

Thus 

[log log a,] = 1 + max ([log log ai], [log log aj]). (18) 

From (17), (18) and the definition of the a’s, we obtain by a simple parity 
consideration that (16) has no solution, which completes our proof. 
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One would expect that there exists a sequence satisfying (15) for which 
(ai , CZ~) = a, is never solvable in distinct integers, but we have not been able 
to show this. 

Perhaps the following result holds: Let a, < a** be a sequence of positive 
upper logarithmic density, then there is an infinite subsequence ai, , a4 , 
so that the least common multiple of any two dij’s is again an a (not necessarily 
a member of the subsequence ai,). To show this it would suffice to show that 
if a, < a2 < I** has positive upper logarithmic density, then there is an ai , 
so that the set of aj’s for which [ai , u,] is again an a has positive upper 
logarithmic density. We can not decide these questions even if we assume 
that the a’s have positive lower density. 

Finally, we remark that for every E > 0 it is easy to construct a sequence 
of density > 1 - c for which ai * aj = a, has no solutions, but if the sequence 
has upper density 1 there always is an infinite subsequence ai, , 1 <j < co, 
so that all the products JJ ~2, ej = 0 or 1 are a’s (only a finite number of 
Q’S are 1). 
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