
[9]

Applications of Probabilistic Methods
to Graph Theory
Paul Erdös

Both in his lectures and his written work, Erdös takes great pleasure in offering
a monetary reward to anyone who can settle a stated conjecture ; such an offer
is made in this lecture . The reader is assured that this offer is bona fide and that
Erdös has occasionally had the pleasure of paying . Whenever Erdös spoke (or
"preached," as he put it), our setitittar audience was always a bit larger than
average .

The area of probability in graph theory arose from a theorem of Ramsey,
which may be simply explained by the following celebrated problem : Prove
that among any six people at a gathering, there will always be three mutual
acquaintances or three mutual nonacgtiaintances .

Here is the basic idea of a probabilistic argument . To prove that there
exists a graph with a specific property, one derives an estitiiate on the number
of graphs which do not have the property . If it can be shown that this number is
definitely less than the total number of graphs with a given number n of points,
then there must exist a graph with the property in question . But this does trot
give any clue on how to construct such a graph . For example, it had been
shown by probabilistic methods that there always exists a graph with an
arbitrarily large chromatic number as well as an arbitrarily large girth, but no
one had any idea of how to find such graphs. In September 1966, a high school
student from Budapest named L . Lovándeveloped a method for constructing them,
having nothing to do with the probabilistic proof.

The application of probabilistic methods to raph theory stems from a
well-known theorem of Ramsey [16], an En lish philosopher and mathemati-
cian, whose brother is the Archbishop of Canterbury . A special case of
Ramsey's result may be stated in the lan ua e of set theory : For any infinite
set S and any partition of S x S into two subsets Tt and T2 , there exists an
infinite subset A of S such that A x A is contained in Tt or in T2 . Clearly the
same result holds if the partitionin is into any finite number of subsets .

This result can be stated in raphical lan ua e as follows : Every infinite
raph contains an infinite complete sub raph or an infinite independent set
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of points. In other words, for any infinite raph G, G or its complement 0
contains an infinite complete sub raph .

The finite form of Ramsey's theorem is more involved . Let f(r, s) be the
smallest inte er such that every raph G with f(r, s) points contains at least r
mutually adjacent points or s independent points . Symbolically, G contains
the complete raph Kr or C contains KS . Of coursef(r, s) = f(s, r) . An upper
bound for the value off(r, s) was found by Erdös and Szekeres [11], and there
has been no serious improvement of this result :

f(r, s) < ~r+s-2)

	

(1)r-1

The proof of (1) follows readily from the followin recursive inequality
by double induction on r and s :

f(r, s) < J '(r - 1, s) + f(r, s - 1).

	

(2)

To prove (2), let G be any raph withf(r - 1, s) + f(r, s - 1) points, and
let v be any point of G. Let A be the set of points adjacent with v and B the
remainin points . Then A has at least f(r - l, s) points or B has at least
f(r, s - 1) points, since the sum is the total number of points in G . Assume
that A has f(r - 1, s) points . Then it follows that the sub raph induced by A
contains Kr_, or KS . If A contains Kr _ ,, then the sub raph induced by v and
A contains Kr ; otherwise, G has s independent points . If A does not have
f(r - l, s) points, then B hasf(r, s - 1) points, and similar ar uments show
that G contains Kr or has s independent points, provin inequality (2) and
hence the theorem .

The special case of (1) when r = s is

f(r, r) < (2r2)

	

(3)r-

1)-This has been improved by Frasnay [12] to the inequality

.Í (r, r) < 8 (2r
- 2

9 r-1 .

	

(4)

A question on a Putnam examination a few years a o asked the contestants
to prove that amon any six people at a atherin , there will always be 3 who
know each other or 3 who do not know each other . In other words, for any
raph G of six points, either G or C contains a trian le . Thus this question asks

for the proof that f(3, 3) = 6 .
It is also known that f(4, 4) = 18, and it is easily shown that f(r, 2) = r .

Gleason (unpublished) has recently extended the known values of f(r, s), but
the determination of exact values in eneral remains a difficult unsolved
problem, even for f(r, r) . The conjecture has been made that (fir, r))' , '
approaches a limit as r -> oo . The followin bounds on (f(r, r))"' are known

,~2<(f(r,r))'1'<4 . (5)
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The upper bound in (5) follows immediately from (3) since
2r-2)
r-1 < 4' .

The proof by Erdös [3], [6], and [7] of the lower bound uses probabilistic
methods as follows. From n iven points, fix any r of them and suppose that
either all lines or no lines joinin them appear, that is, they induce K, or K, .
Since there are two choices for each other line of a raph with n points, namely

"to be or not to be," there are exactly 2 (2) (2) possibilities for the occurrence

of these other lines . There are (n) ways of choosin r points from n iven

points, and there are 2(2) labeled raphs with n points . Therefore, for every n
satisfyin the inequality

(Y) .2 .2(2)-(i) < 2 "/2

	

(6)

there is a raph with n points containin no K, or K, . Note that the factor 2
in the left side of (6) refers to the choice of K, or K, . But it is easy to verify
that (6) holds whenever n > 2'/ 2 . Hence f(r, r) > 2'/2 , completin the proof
of (5) . Note that no explicit construction is known for such a raph . Only its
existence has been proved by this probabilistic (or one mi ht say computa-
tional) ar ument .

An interestin special case is the study of f(3, s) . When r = 3 is substi-
tuted into inequality (1), we et

f.( 3, s) <-
(S
+I

I }

	

(7)

This inequality has not been much improved . But it has been observed by
several mathematicians that you can subtract es, a constant times s, from the
ri ht side of (7) . Incidentally, a trivial lower bound is iven by

f(3, s) > 3s .

	

(8)

By elementary but complicated computations, Erdös [4] has proved the strict
inequality in the followin result .

(lo s)2
< f(3, s) < [ s 2 1) - cs .

	

(9)

Conjecture . As s --> oo, f(3, s)/s 2 approaches a constant . (t offer fifty
dollars to anyone who can prove or disprove this conjecture .)

A well-known problem (see Dirac [2]) asked whether there exists a raph
G with an arbitrarily hi h chromatic number containin no trian le . Writin
under the pseudonym of Blanche Descartes [1], Tutte proved this result by
providin an explicit construction of a raph with an arbitrary chromatic
number containin no trian le . As is often the case, this theorem was later
rediscovered independently ; see Zykov [17] and Mycielski [15] .
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Tutte's result was extended by Kelly and Kelly [14], who proved by an
explicit construction that for any positive inte er r, there exists a raph G that
contains no trian le, quadrilateral, or penta on and that has a chromatic
number reater than r . They conjectured that, for any two positive inte ers r
and s, there exists a raph G, whose chromatic number is at least r, which
contains no poly on with fewer than s sides . This conjecture was proved by
Erdős [5], usin a probabilistic ar ument, the outline of which follows .

Consider a raph G with a lar e number n of points and let c be a lar e
constant. Consider further that G is a random raph with n points and cn lines .
In a series of papers on the evolution of random raphs, Erdős and Rényi [10]
studied the probable structure of G and its dependence on the value of c . They
showed that for sufficiently lar e c almost all raphs contain trian les,
quadrilaterals, and so on. A simple computation shows that the expected
number of small cycles is very small . Destroy them by deletin one line from
each small cycle . But another simple computation shows that most of the
remainin raphs still have an arbitrarily lar e chromatic number .

Erdős and Hajnal [8] ave a simple construction of an infinite raph
havin infinite chromatic number and containin no trian le . Let N(2) be the
set of all unordered pairs of distinct positive inte ers {i, j) with i < j. Now
construct a raph G with point set N(Z) in which, for every two inte ers i and k,
the pairs ( i, j) and {j, k} are adjacent . Clearly, G has no trian le. To prove that
the chromatic number of this infinite raph G is infinite, assume that the
chromatic number X(G) = r < oo. Then the points of G can be split into r
classes of independent points . Applyin Ramsey's theorem to the complete
raph H whose points are the inte ers, we find that at least one of these classes

contains an infinite complete sub raph H' of H. Therefore, it also contains
two lines (i, j) and (j, k), which shows that G can not have chromatic number r.

A classical problem is to find the maximum number n of points so that the
lines of the complete raph K„ can be colored with r colors, in such a way that
there is no trian le which is unicolored (all one color) . The solution, that n = 5
when r = 2, is (in dis uise) the Putnam examination question mentioned
above. Recently, Greenwood and Gleason [13] showed that for 17 points,
every colorin with three colors contains a unicolored trian le, but for 16
points, not every colorin contains such. For 66 points and four colors, there
always exists a unicolored trian le, but until very recently, the situation for 65
points was unsolved. However, a Hun arian sociolo ist, Szalai, showed by an
explicit construction that one can color the lines of K65 by usin four colors
so that there is no unicolored trian le . Incidentally, in this process Szalai
rediscovered Ramsey's theorem .

Erdős and Rado [9] proved the followin related theorem concernin
infinite raphs without the continuum hypothesis but by usin the axiom of
choice. For every infinite cardinal number m, there exists a raph G with m
points containin no trian le and havin chromatic number m .

Erdős conjectured that there exists a raph G containin no quadrilateral
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and whose chromatic number is nondenumerable . He offered ten pounds to
anyone who could prove or disprove it, and Hajnal has just settled this con-
jecture ne atively . Actually, the proof is not difficult .

We conclude by notin that probabilistic methods do not usually ive the
best possible results, but they can be used in many different situations and
enable one to attack problems which could not even be started otherwise.
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