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ON SOME STATISTICAL PROPERTIES OF THE ALTERNATING 
GROUP OF DEGREE n 

J. DYNES, P. ERD& and P. TURAN 

To the memory of J. Karamata 

1. In a sequence of papers l) the last two named authors are developing 
a statistical theory of the symmetric group S, of n letters. Some of the 
results can be immediately extended to A,, to the alternating group of 
pt letters but not all. To mention some, Cauchy has found already that the 
number of conjugacy-classes of S, is p (n), the number of unrestricted 
partitions of n 2), the same reasoning does not work with A,. Denoting 
further the elements of S, by P, their order by 0 (P) and with any fixed 
real x by f(n, X) the number P’s satisfying the inequality 

logO 5 +10g2n + Alog’n 
43 

we proved in III the relation 

(1.1) 

(1.2) 

the corresponding reasoning for A,, must be changed. We proved further 
in IV that the elements of almost all conjugacy classes in S,,, i.e. with excep- 
tion of the elements of o (p (n)) conjugacy-classes the others can be com- 
muted exactly with 

exp (l+o(l))~&log2n 
i I 

(exp x = eX) (1.3) 

elements of S,. In what follows we shall prove the following three theorems. 

“ On some problems of a statistical group theory, I-N.” The first paper is printed in Z&s&r. 
f. W~~~~rhebllichkeirsrLeorie und vcw. Gebiei~ 4 (1965) pp. 175-186 the second and third in Acta Math. 

*Acod. Sci. Hung. ‘I. 18, Fax. 1-2 (1967), pp. i51-163 r&p. T. 18: F&c. 3-4 (1967), pp. 607-618, the fourth 
in press. We quote them as I, II, III rap. IV. The sequence wdl be continued. 

2) Thnnrghout this paper tnzo partitions which differ only in the order of summands are considered as 
identical and the summands are positive integers. 
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THEOREM I. The number of the conjugacy-classes g (II) in A, is given by 

g(n) = $p(n) +3(--l)” c (-1)‘p n If-l-=&i 
(2+r) 

P s 2n and (2nfl) mod 4 

with above defined p (n), i.e. expressed with the number of conjugacy- 
classes of S,. 
Using the classical asymptotical formula of Hardy-Ramanujan I) 

P (n) 
1 

--exp JJJi 
4nJ3 ( > 

(1.4) 

which was the subject of several papers of Karamata 3 it follows at once 

s(n) =&p(n) +O($)ew(~J;;) -&exp(~\/G). (1.5) 

Another, less explicit representation (see (5.7)) will give 

s(n) - *P(n) > exp(BJT;) U-6) 

with an explicit positive numerical B; hence the expectation, g (n) being 
equal or “ very nearly ” equal to 3 p (n), is false. 

Further we shall prove the 

THEOREM II. Denoting for any jixed real x by F (n, x) the number of P’s 
in A,, satisfying the inequality (1.1) the relation 

holds. 
A combination of Theorem I with (1.3) gives at once the 

COROLLARY. For almost all conjugacy-classes of A,, (i.e. with exception of 
o (g (n)) = o (p (n)) classes at most) the elements can be commuted 
exactly with 

elements of A,,. 

1) “ Asymptotic formulae in combinatory analysis.” Proc. of London Math. Sot., 2, XVII (1918) 
pp. 75-115. 

2) See e.g. his paper written with V. AVAKUMOWC: “ Uber einige Taubersche SLtze deren Asymptotik 
van Exponentialcharakter ist, I.” Math. Zeitschr. 41 (1936), pp. 345-356. 
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The proofs will illustrate again the role of partitions problems in group 
theory. 

2, For the proof of Theorem I we shall need some lemmata which were 
partly indicated by Frobenius 3. 

Lemma I. The necessary and sufficient condition that a conjugacy- 
class H in S, should be at the same time a conjugacy-class in A,,, is, that it 
should contain an even permutation Pl and denoting its centraliser in S,, 
by C(P,) this should contain odd permutations too. 

Suficiency. Let Pz be an arbitrary element of H and 

Pz = P, P, p,-l P,ES,. (2.1) 

Then (P2 is even and) P3 belongs to the coset 

p3 c (Pi> (2.2) 

of C(P,) in S,,. But since C(P,) contains odd permutations and also even 
ones (e.g. the unit element) the coset (2.2) contains certainly even permuta- 
tions too and thus Pz is conjugate to Pl in A,, too. 

Necessity. Let now H be an arbitrary conjugate class in S,,. The 
necessity of the existence of an even Pl in His evident. If P4 is an arbitrary 
odd permutation, the element 

P, = P,PIP,-’ 

belongs to H. Since all P ‘s with 

P, = PP,P-l 

belong to the same coset P4 C (Pi), the fact that C (PJ contains only even 
permutations would imply that the whole coset P4 C(P,) consists of odd 
permutations, i.e. Pl and P5 could not be conjugate in A,,. Q.e.d. 

3. Hence the only conjugacy classes of S,, we have to investigate are 
those with the property the centralisers of all elements consisting of even 
permutations exclusively. Calling these shortly “ bad ” classes we assert the 

Lemma II. The necessary and sufficient condition for a conjugacy- 
class H in S,, to be “ bad ” is that the canonical cycle-representation of its 

1) “ Uber die Charaktere der alternierenden Gruppe “, Sitzungsberichte der Kbn. Prmssischen Akad. d. 
Wiss. zu Berlin (1901), pp. 303-315. 

L’Enseignement math&n., t. XV. 7 
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elements (which is the same for all as to the number of cycles as well as to 
their length) 

0.1) 
a) should contain no cycles of even length 
b) the occuring odd cycle-lengths are different. 

a) is necessary. If P E H and 

P = (l2...2v)( )( ) . ..( ). 

then the permutation 

p = (123 . . . 2v) 

is odd and owing to 

PPP -1 =p 

p would belong to C(P). 

b) is necessary. If two cycles of equal length would occur 

P = (12 . . ..V)(Vfl)...) 2v)( )...( ), 

then the permutation 

pi = (l,v+l,2,v+2 ,.*., V,2V) 

is odd and owing to 

p1 Pp,l = P 

p1 would belong to C(P). 

a) and b) are suficient. As well-known the order 0 (C(P)) of the 
centraliser C (P) of any element of S, is 

f ml . m2 ! . . . mk ! n;t1n;“2 . . . nrlr (3.2) 

if the canonical cycle-representation consists of m, cycles of length 
n, (v = 1, 2, . . . . k), 1 5 n1 < n2 < . . . . < nk. Thus owing to a) and b) all 
m, ‘s being 1 we have in our case 

O(C(P)) = 11 1-J . . . I, 

the Z, ‘s being different odd integers. But then all elements of C(P) are of 
odd order, i.e. all cycle-lengths are odd and thus all elements of C(P) are 
even permutations indeed. 
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4. Hence we characterised all conjugacy-classes of S, which are not 
conjugacy-classes in A,, i.e. which split into more classes. What can be 
said on their number ? 

Lemma 221. A conjugacy class in S,, can split only into two conjugacy- 
classes in si, at most. 

For the proof suppose for a P, 

PZW,’ = p,, P3p1P;i = p, (4.1) 

and both can be realised by odd p2 and p3 permutations only. Then 

(P3 Pll)& (P3 Pzy = p, 

and p3 p;’ being even, P6 and P7 belong to the same conjugacy-class in A, 
indeed. 

Thus all conjugacy classes of S, consisting exclusively of even permuta- 
tions contribute to the total number of conjugacy classes in A, at least 
by one; their number is evidently g, (rz) where g, (n) stands for the number 
of those partitions of II where the number of summands is congruent to 
n mod 2. In addition we get owing to lemma II and III one more conjugacy- 
class in A,, from all conjugacy-classes in S,, which satisfy a) and b) in (3.1); 
their number is g, (rt) where g, (R) stands for the number of those partitions 
of n consisting of unequal and odd summands. Thus we proved the 

Lemma IV. The total number g (n) of conjugacy classes in A,, is 

g1 (n) f g2 (n) . 

5. Now we can turn to the proof of Theorem I. Perhaps the shortest 
way is the following. Let pk (n) be the number of all partitions of n consisting 
of k summands. Then we have for 1 10 1 5 1, 1 z ( < 1 

(5.1) 

Putting 1’: = -I- 1 we get at once 

and 
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Hence 

i’ 

cc 
siw = + coeffs zn in fl 

y=l 
-L +Wv&+p 

- zy 

= +pcn; +(-:) 

I 
(5 -4) n 1 

- coeffs zn in fi - . 
y=ll +z’ 

To get an alternative form of g, (n) we remark that for 1 z 1 < 1 

and also 

coeffs 2” in fi (1 - z2’-l) = C-1)” coeEs z” in fi (1 +.z2”-‘). (5.6) 
V=l v=1 

Thus we get alternatively 

srb) = 3 p (n) + * coeffs 2” in fi (l-i- 22v-1). (5.7) 
v=1 

Owing to Lemma IV we get 

= 3 coeffs 2” in fI (1 + z2”-‘) . 
V=l 

(5.8) 

Since for real 2 + 1 - 0 

1 z z2 z3 -- ---+=-... 
l- ( z 1.2 2.4 > 

I 1 1 1 rc2 1 N- ---+--..* 
( 1 - z l2 22 32 > 

+=-. 
24 1-z 

and the assertion (1.6) follows from the Tauberian theorem of Hardy and 
Ramanujan l) at once. 

1) “Asymptotic formulae for the distribution of integers of various types.” Proc. of Land. Mafh. 
Sm. (2), 16 (1917), pp. 117-132. 



- 95 - 

Returning to Theorem I we need a representation of g2 (n). Since 
obviously 

” 
g2 (n) = coeffs . 2” in n (1 +.z*“-l) , 

v=l 
(5.9) 

this, (5.6) and Lemma IV give 

g(n) =+p(n) +Qcoeffs.z”in ~(1+z2’-‘). (5.10) 
v=l 

6. In order to get the finite exact representation of g (rr) given in 
Theorem I we have to study the representation 

g(n) = jp(n) ++(-1)“coeti%.r”infi~, 
-V=l 

based on (5.5)-(5.6)-(5.10). Then Theorem 1 follows at once from the 
identities 

= g p(v) P 
Y=* 

and the classical “ Pentagonalzahlsatz ” of Euler 

yij(l-r’) = 2 (-1)‘s 
v= -co 

7. Next we turn to the proof of Theorem II. The proof will be based on 
the theorem proved in I, according which for almost all P E S, 0 (P) satisfies 
the inequality 

exp ( - log n (log log n)“) 5 OF? ( 1. = 7 (7.0 nl n, . . . nk 

here we use again the notation used in 3. Thus as in III, it will suffice to 
prove 

(7.2) 

where F* (n, x) denotes the number of P ‘s satisfying 

PEA” (7.3) 

n, n2 . . . nk 4 exp 
( 

*log2 n f 25 log*n 
J7 > 

(7.4) 
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1 S n, < . . . < nk, k = k(P). (7.5) 
If as in 3. m, stands for the number of cycles of length n,, we have 

i m, n, = n , m, 2 1 (7.6) 
v=l 

the condition (7.3) is equivalent to 

vilmv E nmod2. (7.7) 

Defining C’ as summation extended to m, ‘s and n, ‘s 
(7.4)-(7.5)-(7.6)-(7.7) 

restricted by (7.4)-(7.5)-(7.6)-(7.7) we define for fixed n 

F* (n, x> 1 
n! 

= a,(x) = C’ 
ml ! . . . mk. 1 nyl . . . nFk (7.8) 

and 

This gives 

%I(0 = i eirx d 0, (x) (7.9) 
-m 

‘n(t) =kil (7,6F;7.7) ml !  m ” mk ’ z.... . 

I k I 

exp tJ3’=l 
I 

C log n, - +log” n 
I 1 

log* n m2 mk 
‘. 

n;2l n2 ,.. nk 
or putting 

(7.10) 

and 

(n, n2 . . . qJi’ 
mk 

k= 1 (7.+(7.7) ml !  m2 !  . . . mk !  nyl nT2 .., nk 

(7.11) 

we have 

h(t) = exp 
( 

- y%+Jm. (7.12) 

Let us define further for integer d 



- 97 - 

d, d CT) = ; 1” m 

k=l 

, m’n,’ “‘, ;;I1 mk 9 (7.13) 
1 . 2 . .a. 1 . . . nk 

where C” is extended to the systems satisfying beside (7.6) also 

Cm, z dmod2, (7.14) 

8. In order to obtain a more handy representation for q:, d (z) we fix 
first the n, ‘s as in (7.5) and consider the infinite series 

D(z,y,q, . . ..nk> = C -+.(~Y)::.($Jy. (8.1) myLl ml . 
, m 

This is 

Putting y = + 1 we get at once 

c l 
my2l ml ! m2 ! . ..mk! 

Zmy E d mod 2 
I84 

=+ - i ( 1 +exp; +(-1)” fi 
Y > J-1 -Q(-g)}* 

Multiplying by (H1 n2 . . . q)” and performing the summation first for 
(n,, n2, .-, nk) in (7.5) and then for k we get from (7.12) 

+ (-l)d fi ,l+I’t f c zl 
e-r- 1, 

‘4 
. 

I=1 

Factoringout exp($resp. exp (-c)therightsidetakestheform 

+ ( - l)d (1 - 2) fI (1 - (Zi, - 1) (a+ - 1q i 3 (@r (2) + (- 1)” CD2 (z)) 
i=1 

(8.3) 
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and hence 

vi, d CT> = 4 coeff s . 2” in (q (2) -I- (- 1)d @, (2)) 

and putting d = n 

cp: (7) = 4 coeffs ..z” in (Qil (2) + ( - l>” a, (2)) . (8.4) 

Taking in account (7.12) and as proved in III 

coeffs . 2” in Gp, (2) = e-y 

we get 

cp,(t)=fe-$+O 

Hence if we can prove that 

lim coeffs . 2” in (1 - 2) fi 
’ 21 

1 - (I” - 1) (e’ - 1 = 0 , (84 
n-cm I=1 

the proof of theorem II can be completed as in III. 

9. But (8.6) can be proved as follows. Similar process as in III reduces 
the proof of (8.6) to the proof that for n + co 

coeffs . zn in (1-z) exp 
{ 

it 1 
- - log2- 

log+ n 1-z 
+ 

t2 1 
+- 

610g3 n 
log3 i--- +O. 

-z 

holds, which is equivalent to show that for n + co 
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Here as in III L means the following path of integration. Cutting up the 
z = x + ~JJ -plane along the segment 1 6 x < co L runs along the circle 
1 z 1 = 2 avoiding however the point z = 1 by a “ Schleife ” on both sides 
of the cut 1 5 x 5 2 closing it by the corresponding arc of the circle 

1 z - 1 1 = 1. The only part of the line-integral in III which did not tend 
n 

to 0 with 5 was the contribution of the “ small ” circle; all the corresponding 

ones tend to 0 also in the present case. The last integral in the present 
equals to 

11” - _.- s 

pQ 

n2 2s~ -% n+1 exp - &log n + i(?r-qq2 

+ & (logn f i(-~))~} drp --f 0 

trivially indeed. 
(Rep le 15 Dkembre 1967) 

Institut de Math&matiques 
Acadbie des Sciences de Hongrie 
Rkaltanoda U. 13-15, Budapest. 


