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Let f(n) be the largest integer with the following property: 

Every family F, of n sets contains a subfamily Fi of f(n) sets 

so that the union of two sets of Fi never equals a third*. 

Moser asked for the determination or estimation of f(n). A result 

of Kleitman [ 2] shows that f c n 1 c en/w . J. Riddell who communicated 

this problem to us pointed out that f (n ) > 6. 

The proof is easy. Let A,, . . . , A, be any family of n sets, and 

order them by inclusion. By the theorem of Dilworth [l] either there is a 

chain of length 3 fi or a family of rt fi incomparable sets. In any case we 

obtain f(n) ? fi, which proves Riddell’ s result. Now we prove the following 

THEOREM 

G 5 f(n) 5 2tG i-4. 

*These three sets are assumed to be palrwise different, 
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The lower 

the upper bound. 

Define the 

(1) 

bound has just been proved. Thus we only have to prove 

positive integer k 2 3 by the relation 

k-i 
c 3 

k 

2 
5175 ( 1 2 ’ 

and consider k equidistant points on a circle. By an arc of length i , we shall 

mean a set of i neighbouring points. In the case i c k the meaning of the 

notion “endpoints of an arc” is clear. It is easy to see that the total number of 

arcs of length i for $ 5 I 4 k is at least k 
( ) 2 

, so we can take n arcs, whose 

lengths are between $ and k . These form our family F, . Let us choose a 

subfamily FA of S sets from the family F, , so that the union of two sets of FA 

never can be equal to a third one. We show f,,i 2 k , which, together with (l), 

proves the theorem. 

We say that an arc (in FA ) is minimal with respect to one of its 

endpoints if it does not contain any other arc (in FA ) with the same endpoint. 

For every point there are at most two arcs which are minimal with respect to 

this point (one “to the right” and one “to the left”), the number of minimal arcs 

is thus at most 2.k . 

But all arcs in Fi are minimal, since if one of them (say A) was 

not minimal with respect to any of its endpoints (say X and Y) then we should 

have the relation 

(2) A=A,u A, 

where A, resp. A9 denote the shortest arcs contained in FA with endpoints x 

resp. y ((2) follous from 5 C- i c k). 

This contradiction proves our statement. 

We remark that by the same argument we get that at most 2k arcs 

can be chosen from among the arcs of length i with 2’ C i c 2t’4 (t is 

arbitrary), if the requirement is the same as above. Thus, a subfamily F’ of 
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the family F of all arcs (F contains k2- k + 4 elements), having the property 

that the union of two of them is never equal to a third one, can contain at most 

‘2k log, I kc41 elements. ( log 2 denotes the logarithm based on 2 .) 

The arcs of lengths 2t-4, t = 2,... show that a family of k Loqzk 

arcs can have this property. 

Probably f( n 1 = ( c + O(I D \I;; , but we cannot prove this and have 

no conjecture about the value of c . 
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