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AN EXTREMAL GRAPH PROBLEM 

BY 
P. ERDGS, member of the Academy, and M. SIMONOVITS (Budapest) 

Throughout this paper graphs are supposed not to contain loops and multiple 
edges. G” denotes a graph of n vertices but only if n is an upper index. e(G) denotes 
the number of edges, U(G) denotes the number of vertices, x(G) denotes the chromatic 

number of G. G, X ..n XC, or g Gi denotes the product of the Gi’s, i.e. the graph 
i=l 

obtained from the graphs G1, . . . , Gd by joining any two vertices belonging to different 
Gi’ s. Here the graphs G, , . . . , Gd are supposed to be vertex-independent. Kd (rl, . . . , ua) 
denotes the complete d-chromatic graph with ri vertices of the ith colour, i.e. 

d 

&(r1r .“, rd)= X Ci where e(G,)=O, r(Gi)=ri. If E is any set, IE 1 denotes the num- 
r=l 

ber of its elements. 

Introduction 

p--l 
P. TCRAN proved in 1941 [I] that if K”= X G”t where n, = gi 

[ 3 
or fli = 

,=1 II 
= p-l k-1 +I, and e(G’*l)=O then K” does not contain a complete p-graph and if 

G” is an arbitrary other graph not containing a complete p-graph, then e(c)- 
-=e(K”). 

This is the source of the following problems: 

PROBLEM 1. Let G,. . . . . G, be given graphs. What is the maximum number 
of edges a graph can have if it does not contain any G, as a subgraph? 

Putting 

Cl? J’(M;G~,...,G~)=~~~{~(G”):G,~G~, i=l,..., I) 

the problem can be rephrased: 
Determine the function f(~; G,, . . . , G,) for given graphs G,, . . G,. 

PROBLEM 2. The graphs attaining the maximum in (I) are called extremal 
graphs. Determine the structure of the extremal graphs for given G, , ,.. , G, and II. 

The answer for these problems is fairly similar to the answer for TURAN‘S original 
problem : 
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(2) 

I. We have proved [2] that 

.f@; Gl, . . . . GE) = [I) [l-fw] 
(3) where d+ 1 = min x(GJ. 

IsiSI 

(2) and (3) express that .f(n; G, , . . . , G,) depends very loosely on the structure of the 
graphs G, , . . . , G,, its order of magnitude is already determined by the minimal 
chromatic number. 

II. Later we proved independently [3], [4] that the structure of the extremal 
graphs is also fairly independent of the Gi’s. Our most interesting results connected 
with Problem 2 can be summarized as follows: 

Let G,, . . . . GI be given graphs, K” be an extremal graph for G, , . . . , G, and n 
be large enough. Then there exists an integer v=-0 (depending on some colouring 
properties of (ii’s) such that 

1 

A) K” can be obtained from a graph-product k N; by omitting 0 n2-’ ! 1 
1=1 

( 1 edges from and adding 0 n 
2-L 

r new edges to it. Here 

d+ 1 = min x(Gi). 

B) The components of the product are of almost equal size: 
1 

ni = ll(N;) = ++o nl-7 ( 1 
C) Each vertex XE K” has valency greater than +(d-- I)--c,II’-+ where c1 

is a suitable constant. 
D) Let E=-0 be fixed. There is a constant K, such that the number of vertices 

of Nj joined to at least ENS vertices of Ni is less than K,. 
These assertions have asymptotic character. They illustrate that the extremal 

graphs are very similar to that one in TURNS original theorem. They are the best 
possible in a certain way. The theorem we prove in this paper has “exact character” 
but the graphs Gi are more special. 

Here we have to remark, that this theorem is the first one, which describes the 
structure of rather complicated extremal graphs fairly well. 

THEOREM. Ler r,=l, 2 or 3. rl~rZZ~.-Zrdtl be gil:erz integers. [ f  n is large 
enough, then each extremal graph K” for Kd + 1 (r, , . . .? rdh+ I> is a graph product: 

1) ?li = I = a+o(n); 

2) N, is .an extremal graph .for K2(rl, r,); 
3) N,, a.., Nd are extremal graphs for K2 (1, r2). 
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Concerseij,, if RI, . . . , gd are given graphs such that 

4) there exists an extremal graph k Ni satisfying l), 2), 3) such that 
i=l 

Ri(fiJ= v(N,,: 

5) cl is an extremal graph for K2(r1, rJ ; 
6) N, i; at? extremal graph for &(I, rz), K2 (2, 2), K3 (1, 1, 1) (i# l), 

then I?= X Hi is an extremal graph for Kd+l (rl, . . . , Y~+~), 
1=1 

REMARK 1. Our theorem does not characterize the extremal graphs for 
JL,(r,, . ..- ret+,) completely. First of all, we do not know the extremal graphs for 
K,(r,, rz) sufficiently well. Further, just because of this lack of knowledge about 
the extremal graphs we do not know the exact values of ni for given n. The extremal 
graphs are those among the described ones which have the maximum number of 
edges. As far as we know this can occur for many different choices of the n,. 

REMARK 2. For r1 = 1 [4] proves the statement. We shall prove it only for Y, = 3. 
The case r, =2 can be treated similarly. 

REMARK 3. 

(4) .f(n; K,(ri - 1, rJ) = o(f(n; &(rl, rd)) if fl 5 rz 

probably always holds, but we do not know it for r1 24. This is why we can prove 
the theorem only for r1 ~4. (4) can be proved for y1 =2 as follows: T. K~vARI, V, T, 
S6s and P. TURAN [5] and independently P. ERDBS (unpublished) proved that 

f(n;K,(p,q)) = 0 n’-$ ( 1 if psq. 

P. ERD~S, A. R~NYI and V. T, S6s proved for p=2, BROWN for p-2,3 that (5) can 
not be improved [6], [7]: 

f{n; K,(2,2)) = ;nvo(n3:z) 

and 

(5b) ihf(n; K2(3, ~))/FI~‘~YCI if n-00. 

Now, (5a). (5b) and (5) imply (4) if r, =3. 
Trivially (5b) gives a lower estimation for f(~; K2 (4, 4)). We do not know any 

better lower estimation for it. 

REMARK 4. In a forthcoming paper M. SIMONOVITS is going to prove some 
generalizations. based on Remark 3, 
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Proofs 

First we prove two lemmas. 

LEMMA 1. Let G, be a graph not containing Kz (rl , rz), let Gi (i=2, . . . , d) be 
graphsnot containing K,(l, rJ, K,(2,2), K,(l, 1, l), where rlZrr,S-~.Srr,+, are givers 

positive infegers. Then k Gi does not contain Kdf l(rl, . . . , T~+~). 
i=l 

PROOF. It is sui?icient to consider only the case r2=r3 =.+. =rd+, . We prove,. 
that if G, does not contain any of K2 (rl , rz), K, (2,2), K3 (1, 1,l) and G does not contain 
any Kdrl, 5, r2, . . . ) r2), then GX G, does neither contain any Kd+ l (r r 1 , 2, rz, . . . , rJ.. 
From this the lemma follows immediately by mathematical induction. 

First we remark, that Kd+l(rl, r,, . . . , r2) has the following property: If we. 
omit some vertices x1, x2., . . . , xA from it and either all these vertices belong to the 
same class or x2, x,; . . . , x, belong to the same class and A K r, , then the remaining. 
graph contains a Kd (rl , r2 , . . . , r2), This assertion is trivial if all the vertices belong 
to the same class. In the other case let us denote by U,, . . . , U,+, the classes of’ 
Kd+,h,r2, . . . . 
set if U,= {x 

r2) and suppose that x, E Uj, x2, . . . , xA E r/,. Let V be the empty 
2, . . . , xJ.} and a set containing exactly one vertex of U, - {x2, . . . , xn} 

otherwise. Then one can easily show that the classes lJi (isij, k) and Ujli V-(x1} 
span a graph containing Kd(rl , r,, . . . , r2). 

Let us consider now G X Gd and suppose that it contains a Kd+, (rl, r, , . . . , vz)’ 
the classes of which are U,, Uz,, . . . , U,,,. We show, that either Gd contains only 
vertices of one Uj or it contains one vertex from a Uj and at most r, - 1 vertices. 
belonging to another U,. 

Indeed, if there were x, J’, zE Gd belonging to different Uj’s then they would 
determine a KS (1, 1, 1) &G, contradicting our assumptions. Thus Gd n Uj is empty 
for all but at most two values of j. If there existed ul, z12 E Uj fi Gd, nl, c2 E U, f’ Gd 
then they would determine a K2 (2, 2) & Gd contradicting our assumptions. Thus, 
G,n&+,(r,, r2, a.‘, r2) contains vertices, belonging to the same U,i or a vertex 
x E iJ, and at most r, - 1 other vertices belonging to the same Ulj indeed. (1 Uj f’ G,J e r, 
since G, does not contain a K2 (1, r2).) Because of this there 1s a Kd (rl , . . . , r2) deter-. 
mined by the other vertices of Kd+ 1 (vl , _. . , rJ which is contained by G X G, - Gd = G. 
This contradiction proves Lemma 1. 

LEMMA 2. Let G‘, r be given, r ~3. There exists a constant C+ =+Q depending 
only on 6 and r such that if G” is a graph not containing Kz (3, r) and x E G” is a vertex 
of oalency greater than 6v in it then 

(6) e(G”) sf(v; K2(3, r))-~~,~.~j’~ 

PROOF. Let C be a subclass of vertices of G” consisting of z bv vertices, each of 
which is joined to x. Then for no pl, . ,. , pI E C, U, t’ E Gv - {x} the set of these vertices 
determines a K2 (2, r j the first class of which is {u, u}; otherwise {x, U, U} and {p, , . . . ,p,} 
would determine a K,(3, r) 5 G”. Therefore the graph determined by the edges 
both endpoints of which belong to C, does not contain a K,(2, r). Similarly the 
bipartite graph, determined by the edges one endpoint of which belongs to C, the 
other to G”- C- {x}, does neither contain a K,(2, r) the second class of which is. 
in C. Therefore the number of these edges is O(V~‘~). (The proof in [5] also gives 
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this.) The remaining edges of G” have both their endpoints in G’- C, thus the number 
of these edges is at most f((l -6)~; J&(3, i.)). Thus 

e(G’) s ,f((l -- 6)~; K2(3, Y)) + O(V~‘~). 

Since the disjoint union of two extremal graphs for K,(3, r) does not contain a 
Kz (3, I) either, 

‘(7) f(tsl fv,; K2(3, ~1) Zf(v,; K2(3, r)+fr(v2; K2(3, ~-1). 
.Thus 
(8) e(G”) sf(v; K,(3, Y)) + O(n3/2)-f(6v; K-,(3, r)). 

Since f((6~; K,(3, r))zc,(S~)~~~, (8) implies (6). 

PROOF OF THEOREM. Let K” be an extremal graph for Kd+ 1 (rl, . . . , rd+ ,) and 
colour it by d colours so that the number of edges, having endpoints of the same 
colour be minimal. Then there exist an integer r and graphs N1, . . . ) Nd so that 
A), B), C), D) hold (see introduction and [4], [3]). We shall use them only in the 
~following weaker form: 

U) Ci denotes the class of vertices of Ni, lCil = n, = $ +o(M). 

/J) All the vertices have valency greater than + (n- 1)-o(n). 

Y> Let ~20 be a small constant (fixed only later). Let us denote the class of 
vertices of Ci, joined to at most En vertices of the same Ci by CL. Then there exists 
a constant K, depending only on E and r, , . . , , Ye+ 1 such that ICi- Ci I c= K,. The 
vertices of Ci -CL will be called exceptional vertices, and y) expresses that their 
number is bounded. Clearly, if x E Ci, then x is joined to at most EN vertices of 
Ci but if n =-I~~(E) it is joined to at least lCjl -2&n vertices of Cj because of a) and 
8) G-*3. 

I. Let E = 2 ninj. Trivially, E is the number of pairs of vertices in K” 
1 Sic jsd 

belonging to different classes. 
Lemma 1 implies that 

(9) f(nr &+I (~1, .-. 3 G+I)) = 4-V g E+fh; K2(3, d)+;+(v K2(1,4). 

Indeed, if G”J is an extremal graph for K,(r, , Ye), G”I, . . . , G”d are extremal graphs for 

{K, (I, r2), K2(2. 2), K3 (1, 1, l)}, then G”=B( G”i does not contain a Kdi 1 (rl, . . . , td+ 1), 
i=l 

thus e(K”)Se(G”). It is easy to see that the extremal graphs for {&(I, p2) K2(2, 2), 
K,(l, 1, I)} are also extremal graphs for K2: (I, y2), if n is large enough. If n,(rL - 1) 
is even, the extremal graphs for K, (1, r2) are regular graphs of degree r; - 1. If n,(p2 - 1) 
is odd, such graphs do not exist, the extremal graphs have Pli- 1 vertices of valency 
p2 - 1 and one vertex of valency r, -2. If yti is large enough, among these graphs 
there exist graphs not containing either K, (2,2) or K,(l, 1, 1). This and 

prove that 
f(n; K,U, 4) -f(n; K,U, ~21, K2(2, 21, K3(1, 1, 1)) 

f(nr K2U> ~2)) =f(n; K2U, r2), K2C-L 21, K3U, 1, 1)) 
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for large values of tii. This implies, that each extremal graph for {K, (1, rJ, K,(2, 2)? 
K,(l, 1, 1)) is also an extremal graphs for K,(l, YJ. Therefore, the right hand side of 
(9) equals to e(G”)Ze(K”). Thus (9) holds. 

II. First we remark, that Ci does not contain a I& (3, uz) ; for if it contained a 
K,(3, rz), we could find a Kdel (r3, ,.., rd+ J in the graph spanned by the other 
classes so that K,(3, r2)XKdwl(r3, . . . . T~+~) = Kd+1(3; r,, . . . . rd+l) would be con- 
tained by K”. 

Now we prove that if C; contains a K,(2, r2), then for iz2, Ci does not contain 
a K,(l, r2). Let us denote by Bj (j==2, . . . . d) the class of vertices of Ci ( j= 2, . . . , d) 
joined’ to all vertices of the fixed K,(2, rz) & C;. If there were a uEBj and 
vl, . , . , u,, E B, joined to u (jz2), then these r, + 1 vertices and the fixed K,(2, rJ 5 C; 
and r4, . . . , rd+l suitable vertices of B,, . . . , Bd (if dn3) would determine a 
Kd+1(3, rz, ..a, rd+ r) in K” if E is small enough. (The expression “suitable” means: 
the other vertices must determine a K,- 3 (r4, . . . , ra+ 1 ) each vertex of which is joined 
to each vertex of the fixed K2 (2, rJ and to U, ui , . . , , u,.~ .)Therefore the set {u, vi, . . . , up3 1 
can not exist, Thus Bj contains O(n) edges. Let us consider the jt” class, jz2. The 
number of edges in C;-B, is O(m)j3), where 

mj = iC~-Bjl 5 (2+r2).2uz. 

The remaining edges of K” in C; join C; -Bj to B,. Their number is O(nm!/3).1 
Let us divide Bj into classes of zmj vertices. Each of these classes together 

with C;-Bj determines a graph of = 2mj vertices, not containing K2 (3, r2). There- 

fore each of them has O(mj!3) edges and their number is ~2. Thus C; contains 
.I 

O(n)+ O(mj’l”) $ O(nmf/3) = E213. O(n513) 

edges and the same bound holds for Cj. Thus C3., . . . , C, contain s2j3 * O(U~‘~) edges. 
Let us suppose now that Ci contains a K2 (1, r2) and let Ai denote the set of 

vertices of C; joined to this K,(l, rz). Clearly, A r does not contain any K2(2, r3), 
otherwise C; U A i would contain a K2 (2, r3)~ K2 (1, rz) 2 K3 (3, r, , r3) and taking 
suitable vertices from the other classes we could complete this K3(3. r,, r3) into a 
Kd+1(39 r2, r3, . . . , rd+ 1) SK”. Therefore, the method used above gives that C; con- 
tains only c2i3 0 (,5;3) edges. The same bound is valid for C, , thus 

(10) e(K”) s E+E*‘~O(~~‘~). 

Now we fix E so that (10) should contradict (9). Thus Ci does not contain K,(l, r2) 
and generally, Ci (jz2) also does not contain it. 

In general it could happen that C; did not contain K2(2, rJ. But if no C; con- 
tained a K2(2, r2), then 

e(K”) s E+d.0(n3’*)+O(n) 

would hold contradicting (9). Thus we may assume that C; does contain a K2(2, r2) 
and C;, . . . . Ci do not contain any K,(l, r2). 

1 This can also be derived directly from the proof of [5]. 
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III. Now we show that if II is sufficiently large, then there exist no exceptional 
vertices: Ci = Ci. Actually we prove that if a’ = +rd+ 1 . da E and n is sufficiently 
large, then K” contains no vertices joined to at least a’n vertices of each class. Since 
E is an arbitrarily small positive number, this gives that the maximal valency in 
Ni is o(n). This, of course, implies that C; =Ci for M =-n,. 

Let us suppose that x E K” is joined to at least ~‘n vertices of each class. Then 
the graph G* spanned by x and C; can not contain, a K,(3, rz). Indeed, since C; 
does not contain a K,(3, rz), if G* does, then x must be a vertex of this K,(3, YJ. 
Since each non-exceptional vertex is joined to all the vertices of the other classes 
but at most an, we may select succesively r,, . . . , rd+i vertices of Ci, .,. , Ci so that 
the selected vertices span a Kd- 1 (r,, . . . , rd+ r) and are joined to each vertex of the 
fixed K, (3, rJ. Thus K” contains a Kd+ 1 (3, r, , . . . , rd+ 1 ). This contradiction proves that 
G” can not contain any K, (3, r2). Thus C; (and C1 as well) contain f(n i ; K, (3, r,)) - 
--cn5j3 edges (Lemma 2) where c==-0. Since Ci (i&2) does not contain any K,(l, YJ, 

(12) e(P) zs E+f(n,; K2(3, r,))-cn5i3-i-O(n). 

But (12) contradicts (9). This proves that K” has no exceptional vertices: C; =Ci. 
Thus Ci does not contain K2(3, rJ, C,, ,.. , C, do not contain K2 (1, rJ and con- 
sequently 

(13) 4K”) 5 E+f(n1;&(3, r~))+j~f(ni,K,(l,r,)). 

(13) and (9) proves that 

(14) 4K”) = E+f(nI, K(3, rd) tjif(ni.Ki(Lr2)). 

Since C, does not contain K2 (3, r2), the graph spanned by it must be an extremal 
graph for K2 (3, r2), otherwise the “equal” of (14) would be “definitely less”. Similarly, 
the graphs spanned by C,, . . . . Cd are extremal graphs for Kz (1, rJ and if they are 

denoted by N,, N, , . . , N*, then K” = k Ni, i.e. every two vertices are joined, if 
i=l 

they belong to different Ci’S. 
The second part of the Theorem is trivial now: If fii satisfies our conditions, 

K” = Eli has the same number of edges as K” and according to Lemma 1 it 
i=l 

does not contain a Kd+l(rl, . . . . r,,, ). Therefore it is an extremal graph for it. This 
completes our proof. 

REMARK 5. An easy discussion shows that if rl z 2, r, z 3, {K,(l, vJ, K,(2, 2)= 
K3 (1, 1, 1)) can be replaced by {K, (1, r2), K2 (2, 2)) but it cannot be replaced by 
&Cl, rd. 

(Received 22 April 1969) 
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