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Abstract. Denote by G(r)(n ; k) an r-graph of n vertices and k r-tuples. TurLn’s classical problem 
states: Determine the smallest integer f(n ;r, I) so that every G(‘)(n ; f (n ; r, I)) contains a K(‘)(I). 
Turin determined f (n; r, I) for r = 2, but nothing is known for r > 2. Put lim,=., f  (n ; r, l)/(y) = 
cr,l. The values of cr l are not known for r > 2. 

I prove that to every E > 0 and integer t there is an no = n&t, E) so that every 
G(‘)(n; [(cr,/+ E) ($1) hasltverticesx, y’, 1 < i < r, 1 <j 5 1, so that all the r-tuples _ _ 
{,W 

11 
,...,X+‘} lr ’ l<i St lljr < s ’ 1‘. <jr 5 I, occur in our Go). Several unsolved problems 

are posed. 

By an r-graph GQ (Y > 2) we shall mean a graph whose basic ele- 
ments are its vertices and r-tuples; for r = 2 we obtain the ordinary 
graphs. 

G@))(n) denotes an r-graph of II vertices. 
G(‘)(n; m) denotes an r-graph of y1 vertices and m r-tuples. 
K@(n) will denote G(‘)(n; (F)), the complete r-graph of n vertices. 
Kf’b,, .‘., nl) will denote the r-graph of Z& ni vertices xi(i), 

llj<l, lli- 
(#) 

< nj, and the r-tuples of our graph are all the r-tuples 
(jr)>, 1 < jr < . . . < jr 5 I, 1 5 i, I ?Zjl, . . . . 1 < i < nj,. 

‘fu,(;)ti; 211 denote @(t, . . . . t). 
e(G@)) denotes the number of r-tuples in G(‘). Thus e(@(n 1, . . . . nl>) 

equals the rth elementary symmetric function formed from rzl, . . . . nz. 
f(n; G(‘)(u; u)) is the smallest integer for which every 

Gf)(n;f(n; Gcr)(u; u)) contains G(‘)(u; u) as a subgraph. Put 

f(n; Ip(t)) = j-p(n; t) , f(n; K(‘)(I)) = fiqn; 1) =@‘(n) . 

In other words fi(‘)(n) is the smallest integer for which every 
G(‘)(n; fr”)(n)) contains a K(‘)(I). 
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The functionf(n; GC2)(u; u)) was extensively studied in several recent 
papers [ 2, 4, 11 I. Turin ([ 133, see also [ 121), who started these investi- 
gations, determined fiC2)(n) for every I and y1 (e.g. fj2)(pz) = [ %n2] + 1). 
He proved 

(1) ;lJ p’(n)/($)= 1 -A ‘ 

The values of fr(‘)(n) are unknown for every P 2 3 and I> P, though 
T&n made many years ago several plausible conjectures. He conjec- 
tured, among others, that 

f4’3’(3n> = 3n(9 + 2 + 1 ) S53’(2n> = n2(PZ-1) + 1 . 

It is known and easy to see that 

(2) lim f?)(n)/(:) = c,~ 
n-t- 

exists, in fact it is shown in [ 91 that fr(‘)(rz)/(F) is a nonincreasing se- 
quence. The values of c~,~ are not known for r > 2, I > r. 

Stone and I [73 proved that for every t 2 1 and I> 2, 

(3) lim frC2)(n; t)/(5) = 1 - -l- 
rz+=- l-l . 

Let GC2) be an ordinary graph of chromatic number 2. Simonovits and 
I [61 proved 

(4) f(n ; Gc2’)/(;) = 1 -L 
I-1 . 

(4) is an easy consequence of (3), since every I-chromatic graph GC2) is a 
subgraph of some Klc2)(t). 

Very little is known about f(n; Go)) for Y > 2. I proved [ 31 that for 
everyr2 2andt> 1, 

For Y = 2 this is a result of Kijvari and the Turans [ 101, who proved that 
E~,~ i l/t. It seems likely that e2,t = l/t, but this is known only for 
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t = 2 and t = 3 ([ 1 I , see also [81). The best possible values for E,, r are 
not known for r > 2. 

Let 

(3) immediately implies that every GC2)(,; [ tin2 ] ) contains a subgraph 
of m = m(n) (m + 00 as n + -) vertices which has at least %m2( 1- l/(r- 1)) 
edges (it suffices to take the subgraph Kf2)(t)). It is easy to see that 
%(l - l&l>) cannot be replaced by a larger number. 

Let G(‘)(n) be any graph having the vertices x1, . . . . X, . 
G(r)(xil, . . . . Xim ) is the subgraph spanned by the vertices xil, . . . , xjm . By 
probabilistic methods [ 51, the following result can be proved: 

Let O< LY < V2 and let II + m. Then there is a G(2)(n; [olra2]) so that 
for every (m/log n) + m every subgraph GC2)(x. II, ***, Xim) spanned by m 
vertices has (a + o( 1))m2 edges. In other words, the edges are in a cer- 
tain sense uniformly distributed over all large subgraphs. It can be shown 
that this result is also best possible in the following sense: Let 0 < (Y < 9’~ 
and G(*)(n; [ions]) any graph. Then to every c there is an E so that our 
graph has a spanned subgraph G’2’(Xi,, . . . . xi,), m > c log y1 for which 

(a-e)m2 < e(G(‘)(x. II’ ‘*WY Xim )) < (ff + e)m2 

is not satisfied. We do not discuss the proof of these results in this paper. 
(5) clearly implies that every G(‘)(n; [en’ 1) contains a subgraph of m 

vertices (m = m(n), m + = as n + m) which has at least (m’/r’) r-tuples. 
(To see this, it suffices to consider the subgraph K,?)(t) the existence of 
which is guaranteed by (5).) Unfortunately, this is the only result of 
this type which I can prove for Y > 2. I am certain that the following 
result is true: 

There is an absolute constant c > l/r’ so that every 
G(‘)(n; [(rf/r’) (1 +E)]) contains a subgraph G(‘)(m; [cm’]) where 
m=m(n),m-+= asn+w. 

I cannot even prove this conjecture for r = 3. On the other hand I can 
generalise (3) for r-graphs. In fact, I can prove the following: 

Theorem. For every Y 2 2,12 r and t 2 1, 

lim fi@)(n; t)/(F) = c, 1 . 
n--= 
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The only blemish is that we do not know the value of c,,~ for r > 2. 
To prove the Theorem we have to show that for every r 2 2, t 2 1 

and e > 0, G(‘)(vt; [ (c~,~+ E) (,“)I always contains a KY)(t) if 
n > no@, f, I, E). First we prove the following 

Lemma. For every G(‘)(rz; [(c,,~ + E) (F)]) and every m 2 r there is a suf- 
ficiently small TJ = T)(E) > 0 so that for at least r)(k) m-tuples xii, . . . . xim, 

(6) 

Proof of the Lemma. We evidently have (the summation is extended over 
all the (i) m-tuples of n) 

since each r-tuple of our G(‘)(n; (c~,~ + E) (F)) occurs in exactly (:I;) 
m-tuples. 

On the other hand, if our Lemma would not be true then for all but 
q(z) of the r-tuples, the r-graph G’r’(Xi,, . . . . Xim) has at most 
(cr I+ %2e) (y) r-tuples and the remaining n(g) graphs GCr)(xi,, . . . . xjm) 
can of course each have at most (7) r-tuples. Thus we would have 

(8) Ce(Gcr’(xil , -**,xjm)< (~)(~)(Cr,~+~~) +9(i)(y) 

for sufficiently small q = V(E). (8) clearly contradicts (7) since (k)(y) = 
(g--‘r, (f). This contradiction proves the Lemma. 

Now we are ready to prove the Theorem. An I-tuple (I > r) of our 
G(‘) is called good if all its r-tuples occur in Goa 

Proof of the Theorem. Let G(r)(xjI, . . . . xim) be any of the q(k) subgraphs 
of G”)(n ; [ (c~,~ +E) (:)I) which satisfy (6). By the definition of c,,~ this 
graph contains a K(‘)(I) if m > ma(e), i.e. an I-tuple all whose r-tuples 
occur in the graph, in other words a good I-tuple. Thus there are at least 
q(G) I-tuples all whose r-tuples occur in G(‘). These good I-tuples are not, 
of course, all distinct, but the same I-tuple can occur in at most (iZzl) 
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m-tuples. Hence form > m. our graph contains at least 

good I-tuples. The good I-tuples define a G@(n) which, by (9) and (5) 
contain a K/O(t) for every t if n is sufficiently large. By the definition of 
good I-tuples, the K,(‘)(t) having the same vertices as K/O(t) occurs in 
G”)(n; [CC,] +e)(~)l) ( i.e. all its r-tuples occur in Gc’)) and this completes 
the proof of the Theorem. 

By the same method we can prove the following slightly more general 
result: 

Let G(‘) be any r-graph whose vertices are x1, . . . . x,. Go)(,) is defined 
as follows: Its vertices are xv), 1 I i I yt, 1 I j I t; anr-tuple 
(,(id , . . . . xv”), 1 I i, < 
G;:,(t) if azd only if (x 

. . . < i, I ~1, 1 I j, _< t, s = 1, . . . . r, belongs to 
jl, a.-, xi,) belongs to G @). We then have for every 

tl 1, 

lim f(n; G(‘))/(y) = lim f(n; G(‘)(t)/(“,) = G(‘)(c) . 
n+- n-- 

Unfortunately, G(‘)(c) is known only if G@) is a subgraph of KY)(t) 
for some t, in which case G@)(c) = 0. However, we can give a lower bound 
for G(‘)(c) as follows: 

G(‘) defines an ordinary graph G(2)(G(‘)) by: GC2)(G(‘)) has the same 
vertices as Gcr); two vertices of G(‘) are joined in G(2)(G(r)) if and only 
if they belong to the same r-tuple of G @I. Let 1 be the chromatic number 
of GC2)(Go)). If I= r, then G(‘) is a subgraph of some @j(t) and r 
G(‘)(c) = 0. In general, it is easy to see that 

r-1 

(10) Gcr)(c) 2 PO 

In general, ( 10) is certainly not best possible. 
Perhaps the following result holds: Every GC3)(3n ; y1 3+ 1) contains 

either a Gc3)(4, 3) (the structure of this graph is unique) or a graph of 
5 verticesxr, . . . . x5 and four triples (xl, ~2, ~3 ), (XI, ~2, ~4 ), 

(xl, ~2, x5), (x3, x4, x5), or a graph of 5 vertices and five triples 
(x1,x2,x3), (xi,x2,x4)~ (x1,x3,x5), (x2,X4,X5), (x3,x4,x5). 
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