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For a sequence of integers S = (si, s2, . . . ), we denote by P(S) the 

set 

I 

co a3 
c “plk : Ck = 0 or 1, c Ck < cu . 
k=l k=l I 

We say that S is complete if all sufficiently large integers belong to P(S). 

Conditions under which a sequence S is complete have been studied by a 

number of authors. These sequences have ranged from the slowly growing 

sequences of Erdiis [3] and Folkman [4] (sn = Ooiz)), the polynomial and 

near-polynomial sequences of Roth and Szekeres [9] , Graham [5] and Burr 

[ l] , to the near-exponential sequences of Cassels [ 21 (sn = 0 (exp (n/logn))) 

and the exponential sequences of Lekkerkerker [7] and Graham [6] (sn = 

[tin]). In this note, we investigate sequences in which each term is a Fib- 

onacci number, i.e., an integer F n defined by the linear recurrence 

F 
n+2 = Fn+l + Fn, nz 0, 

with FO=O, Fi=l. 

For a sequence M = (mi, m2, -9. ) of nonnegative integers, let SM 

denote the nondecreasing sequence which contains precisely mk entries 

equal to Fk. It was noted in [7] that for M = (1, 1, 1, ***), SM is com- 

plete but the deletion of any two terms of SM destroys the completeness. 

Further, it was shown in [l] that for any fixed a, if M = (a, a, a, a. 0) 

then some finite set of entries can be deleted from SM so that the resulting 

sequence is not complete. This result can be strengthened as follows (where 

T denotes (1 + JT)/Z). 
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Theorem 1. If 

t&r. 

k=l 

then some finite set of entries of SM can be deleted so that the resulting se- 

quence is not complete. 

Proof. The proof uses the ideas of Cassels [2]. Let [Ix]] denote 

min 1x - n] where n ranges over all integers. It is well known that Fn can 

be explicitly written as 

Fn = 1 (7” 
6 

- GT)-n) . 

Thus 

c llsT1l = 5 mkl\FkT1l 
SEsM k=l 

=c II mk FkT - Fk+l 11 
k=l 

00 
(9 ,’ 1) (-T)-k 

I/ 
00 

T2 + 1 5- 
I I c m7 k 

-k < 00 

76 k=l 

by f&e hypothesis of the theorem. Hence, by deleting a sufficiently large in- 

itial segment of SM, we can form a sequence PM for which 
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But T is irrational so that for infinitely many integers m, we have 

The subadditivity of (1 . (( s ows that such an m cannot belong to P(pM). h 

This proves the theorem. 

It follows in particular that if 1 < 6 -Z r and mk = O(ek) then SM 

is not “strongly complete, ” i, e. , the deletion of some finite set of entries 

from SM can result in a sequence which is not complete. 

In tbe other direction, however, we have the following result. 

Theorem 2. Suppose for some E ’ 0 and some ko, mk ’ ET 
k 

for 

k > kO. Then SM is strongly complete. 

Proof. For a fixed integer t, let Ml denote the sequence 

(0, 0, l s-, 0, mt+ls mt+2y l **) . - 
t 

It is sufficient to shaiv that SM, is complete. We recall the identity 

(1) Fn+2k + Fn-2k = L&F,, 

where Lr is the sequence of integers defined by L,+2 = L,+l + L,, n Z 0, 

with Lo = 2, Ll = 1. It is easily shown that Fr ‘: rr and 

for r 2 0. We can assume without loss of generality that t b k0 and ET’ 

> 2, Choose 1 “4/e and n > t + 2[, We can form sums of pairs F + 

F from SM’ to get at least ET 
n-2k 

n+2k 
n-2k copies of L2kFn (by (1)) for 0 5 k 

se, n-ti 
%IICe ET =- crt =) 2 then these sums can be used to form all the 
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multiples uFn, 
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k=O 

Since 

then we have formed all multiples uFn, 

The same argument can be applied to the terms Fn+l*2k (which are distinct 

from the terms previously considered) tc form all multiples vF,~, 

15vs EC2 + 1) rn+l 
2 . 

Of course, Fn and Fn+l are relatively prime so that the set of integers of 

the form xF, + YF~+~, x and y nonnegative integers, contains all integers 

=-F F n n+l - Fn - Fn+l (cf. [ 8] 1. For any integer 

Nj = FnFn+I - Fn - Fn+i + j, 1 5 j 5 Fn+2 , 

the coefficients xj and yj in a representation 

Nj = xjFn + y.F J n+l 

certainly satisfy xj 5 Fn+I, yj I Fn. Thus, n+l xj, yj ‘E 7 -= 27 n. Since 

u and v can range up tc 

E(P + 1) rn 
2 ’ 2P 
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then by using the multiples of Fn and Fn+I we have just considered, we 

can represent all the N., 1 5 j 5 Fn+2, as elements of P(SM, ). 
J 

Finally, 

since we have used at most ET 
n-2 

copies of Fn+i, 2 5 i, in this process, 

we still have available at least e(rn+2 - Tnm2) ’ 1 copies of Fn+i to use in 

forming sums in P(SIvI, ). By adding sequentially a single copy of Fn+i, 

i = 2, 3, 4, l l *, to the N., 
3 

it is not difficult to see that all integers ‘Ni 

belong to P(SM, ). Thus, SM, is complete and the theorem is proved. 

It should be pointed out that the condition 

00 

c %‘-k = 00 

k=l 

is not sufficient for the completeness of SM as canbe seen from the example 

in which 

“k = [ ;k] 

1 

fli;ls;n for some n 
. 

However, the proof of Theorem 2 directly applies to show that if me /rk is 

monotone and 

then SM is strongly complete. 

It would be of interest to investigate refinements of these questions. Of 

course, similar results and questions arise for other P - V numbers be- 

sides T but we do not pursue these here, 

1. 

REFERENCES 

S. A. Burr, “On the Completeness of Sequences of Perturbed Polynomial 

Values,” to appear in the Proceedings of the 1969 Atlas Symposium on 

Computers and Number Theory. 



254 ON SUMS OF FIBONACCI NUMBERS Apr. 1972 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

J. W. S. Cassels, “On the Representation of Integers as the Sums of Dis- 

tinct Summands Taken from a Fixed Set,” Szeged, Vol. 21 (1960), pp, 

111-124. 

P. Erd&, “On the Representation of Integers as Sums of Distinct Sum- 

mands taken from a Fixed Set,” Acta Arithmetica, Vol. VII (1962), pp. 

345-354. 

J. Folkmsn, “On the Representation of Integers as Sums of Distinct 

Terms from a Fixed Sequence, l1 Can. J. Math. , Vol. 18 (1966), pp. 643- 

655. 

R. L. Graham, “Complete Sequences of Polynomial Values,” Duke Math. 

Journal, Vol. 31 (1963), pp. 275-285. 

R. L. Graham, “On a Conjecture of Erd& in Additive Number Theory,” 

Acta Arithmetica, Vol. X (1964), pp. 63-70. 

C. G. Lekkerkerker, “Representation of Natural Numbers as a Sum of 

Fibonacci Numbers,” Simon Stevin, Vol. 29 (1952), pp. 190-195. 

N. S. Mendelsohn, “A Linear Diophantine Equation with Applications to 

Non-negative Matrices,” Proc. 1970 I&l. Conf. on Comb. Math., Annals 

N. Y. Acad. Sci., 175, No. 1 (1970), pp. 287-294. 

K. Roth and G. Szekeres, %ome Asymptotic Formulae in the Theory of 

Partitions,” Quart. J. Math. , Oxford Ser., Vol. 2, No. 5 (1954), pp. 

241-259. 

[Continued from page 261. ] 

A GENERAL Q-MATRIX 

2. D. A. Lind, “The Q Matrix as a Counterexample in 

onacci Quarterly, Vol. 5, No. 1, Feb. 1967, p. 44. 

3. E. P. Miles* TlFibonacci Numbers and Associated 

Mathematical Monthly, Oct. 1960, p. 748. 

Group Theory,” Fib- 

Matrices,” American 

4. Stephen Smale, “Differentiable Dynamical Systems,~l Bull. AmericanMath. 
Society, 73, 1967, pp. 747-817. 


