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Abstract. Sequences of elements from (a’dditive) abelian groups are 
studied. Conditions under which a nonempty subsequence has sum equal 
to the group identity 0 are established. For example, an n-sequence with 

exactly k distinct terms represents 0 if the group has order g < rz + 
k and n > k 2 . 

i) 
The le‘ak number f(k) of distinct partial sums is also considered, 

for the case of k-sequences of distinct elements such that no nonempty 
partial sum is equal to 0. For example, 2k - 1 < f(k) < [ 4 k2] + 1. 

In this paper a sequence is a selection of members of a set, possibly 
with repetit’ions, in which order is not important; elements a’re members 
of sets, and terms are members of sequences. 

DEFINITION. Let * be a binary operation on a set A, a’nd let 
8 = (a& be a sequence of elements from A. S will be said to represent 
the element lceA if 

(i) m is a term in S, or 
(ii) there exist y, x EA such that r: = y*x, and y and z are represent- 

ed by disjoint subsequences of 8. 
(Clearly this notion extends to general algebras.) 

In particular, if (G, +> is an abelian group and S = (a& is a se- 
quence of elements from G, then S represents xcG just if there exists 
a sequence E = (E$-.~ of elements from (0, l}, not all 0, such that 

ta 

i--l. 

We resolve here some aspects of the following two related problems. 
(1) Under what circumstances does an n-sequence of elements from 

an abelian group represent the zero element? 
(2) If an n-sequence of distinct elements born an abelian group does 

not represent the zero element, how many elements does it represent? 
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Sequences representing zero I 

THEOREM 1. Any m-sequmce 8 = (a&=, of elements from an abelian 
group (G, +>, exactly k of which are distinct, represents the group iderttity 0 

k k if the group has order g < n. $- 2 a& rz > k 2 . 
0 0 

Proof. Suppose on the contrary that S does not represent 0. Then, 
none of the elements represented by the first m terms of S is 0, and none 

5” 
is equal to any of the n-m sums of the form 2 ai, with m + 1 < Y < rz, 

2=1 

for otherwise the difference would be a sum equal to 0. Again, none of 
these latter n-m sums equals 0, and a’11 are distinct, for otherwise there 
would be a difference equal to 0, contrary to hypothesis. 

We shall show that a suitable choice of m can be made, such that 
k at least m+ 2 

0 
elements are represented by the first m terms of S; so 

k with the latter fi - m sums a total of at least n+ 2 
0 

nonzero elements 

are represented. This is inconsistent with g < n + i , so the initial hy- 
0 

pothesis is false and the theorem follows. 
We may suppose there are t equal terms in S, say a, = a, for 1~ i < t, 

where kt > n. Then X represents those elements equal to sa,, for 1< s < t, 
which are necessarily distinct and different from 0. There are now two 
cases to consider: either (i) S has a term not in [a,], the subgroup of G 
generated by ul, or (ii) all terms of S are in [al]. 

Case (i), Suppose a t+,d[a,]. Then with m = t+ 1, these first m 

terms of S must represent 2tS 1 distinct elements. If n > k i , at least’ 

m+ 
0 

0 
i distinct elements are represented, because k-t > n, which is what 

we require. 
Case (ii). Let ai = ria, for 1 < i < n, where the sequence S’ = (ri)i>1 

comprises positive integers, exactly k of which are distinct, and ri = 1 
for 1 < i < t. (Since S does not represent 0, S’ has no zero terms.) Regard S’ 
as a sequence from the addit,ive group of integers, If no term of S’ exceeds t, 

then S’ represents all positive integers up to and including i vi, and 
i=l 

this sum is at least as large as the sum of the first k positive integers to- 

gether with a further !n - 7c ones. Thus S’ certainly represents g if g < fi + i , 
0 

so 8 represents ga,, which is 0 since g is a multiple of the order of a,. 
This is a contradiction, so S’ must contain a term which exceeds t, say 
rtfl > t, Again take ti = t + 1 and repeat the argument of Case (i.). n 

This theorem is best possible in the sense that t’he bound on g cannot 
be improved in general, for if a; = i for 1 < i < k and ai = 1 for 7~4 1 
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< i < rz, then B represents all nonzero elements of the additive group 

of residue classes modnlo nf 
0 
i +l, but does not represent 0. On the 

other hand, it is not clear what the best bound for rz should be. If we take G 
to be the additive group of residue classes modnlo 2s2+ 4s, where s is 
any positive integer, and S to comprise n - 3s terms specified by uci = i 
forl<i<s,ai =1forsfl~~iZ2s-l,anda,=sZ+ifor2s~i~33s, 

then k = 2s + 1, and S does not represent 0. Since g =. 2s2 + 4s = nn + E 
0 

in this case, it follows that the bound on 1% in Theorem 1 could not be 
reduced as far as i(k- 1) in general. We conjecture that the theorem is 
true for fi 3 ck, where c is some posit,ive constant. 

It is desirable to obtain a result corresponding to Theorem 1 for the 
case in which the exact number of distinct elements appearing in S is 
not known, the only relevant information being a lower bound on the 
number. We can deduce Ohis result by using a theorem first conjectured 
by Erdos and Heilbronn [2], and recently proved by Szemeredi [5], viz., 

THEOREM (Szemeredi). Alzy k-sequence is = (a&, of elements from 
an abelian group (G, +>, all of which are distinct, represents the group 

idedty 0 if the group has order g > g, and ii 2 c,,l/s, where g,, a.lzd c, are 
absolute constaMs. 

Thus, if the n-sequence 8 in Theorem I contains h 2 k: distinct ele- 

ments, and the order of G satisfies g,, < g < n + 
0 
t , then the supposition 

that 8 does not represent 0 implies h G c0 v/11+ (“2). If t is the number 

of terms of S equal to a,, we may assume ht 3 n, whence the argument 
used in Case (i) of the proof of Theorem 1 shows that the first m terms of 8 

k represent at leest m+ 2 
0 

distinct) elements provided 12 3 c,7c’, where c1 

is an absolute constant. All other details of the proof carry over, so we 
have the 

COROLLART TO THEOREM 1. Any n-sequence ~3 = (a& of elements 
from an abelian group (G, +>, at least k of which are distinct, represents 

k the group identity 0 if the order of the group satisfies gb < g < nn+ 2 and 
0 

+a 3 c,k4, where g,, a~~cl: c1 are absolde constaMs. 
It is possible to obtain similar results even when the number of 

distinct elements in S is not so small in comparison with 12. 
THEOREM 2. A,ny n-sequence 8 = (a&L1 of elemeds from an abeliam 

group (G, +>, at least k of which are distin.ct, represents the group identity 0 
if the group has order g < n + k - 1. 

Proof, Suppose on the contrary that 8 does not represent 0. We 
may take the first ?c terms of S to be distinct. As will be shown in the 

8 - Acta Arithmetica XXI. 
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second part of this paper these k terms represent at least f(k) distinct 
elements, and for any 76, f(k) > 2k - 1. None of the elements they represent 

f 
can be equaJ to any of the 1% - k sums 2 a,, where k + 1 < r < N, for other- 

i=l 
wise the cotiresponding difference equals 0 and 8 would represent 0. Similar- 
ly, no two of the latter ti - k sums can be equal, so fi represents at least 
N+ k-l distinct elements. Since AS does not represent 0, this constitutes 
%I contradiction if g < m+ k -1, so the theorem follows. Indeed, it holds 
if g<n++f(k)-k B 

In a sense, the upper bound on g in Theorem 2 is low because of 
the struc.ture of cyclic groups. This is clarified by the next result. 

THEOREM 3. Amy n-sequence 8 = (a,i)bl of eZements from a no/ncyclic 
&belian gwup (G, +> veprestmts the group identity 0 if the group has cwdsr 
$< 2%-l. 

This may readily be deduced from the following result of Olson [a]: 
THEOREX (Olson). If H, K are abelian g+=ozc~.~ of order h, k respective- 

ly, and 7c 1 h, thelz any n-sequence S = (a& of elemestts from th,eir direct 
sum G = H @ K represents th.e identity 0 EG if ~-2 2 h + 7c - 1. 

Proof of Theorem 3. If G is a noncyclic abelian group of finite 
order, there is a direct, sum decomposition 

where C, is t’he cyclic group of order ei , m > 2 and ej+l 1 ej for 1 < j < m - 1. 
With 

we have 

H E @ Cei and 
l<jen- 1 

K LX Ce,, 

m-1 

h = fl ej and 7; = e,,, , SO klh. 
j=l 

By Olson’s theorem, S represents OEG if VL > 7b-k k- 1. Thus, it suffices 
to see tha,t 2n -1~ g = 7zk ensures $2 > h+ 72 -1. This is ea8y; for if a& 
least one of k , k is even, we require 4 hk > F, + k - 2, so (E, - 2) (k - 2) a 0, 
and if both h and k are odd, we require (h - 2) (k - 2) >, 1, which conditions 
are satisfied because 72 >, 7~ 3 2. m 

Sequences not representing zero. Let 8 = (c~;)ik_~ be a sequence 
of k distinct elements from an abelian group (G, +>, such that 8 does 
not represent 0, and let f(k) denote the minimum number of elements 
which can be represented by 8, i.e., 

f(k) = min ( {x EG : x is represented by 8) ( . 
S.G 
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THEOREM 4. f(7;) > 276 - 1 for k 2 1. 
Proof. Clearly j(1) = 1. For some k> 1, suppose f(k)> 2k-1, 

and let 8 = (uJ:z; be a (7G i- 1)-sequence of distinct elements from G which 
does not represent 0. 

Cas e (i). There is a term in S which is not represented by the remaining 
k terms. Then without loss of generality we assume +,I is such a term. 
The 2X:-l elements (or more) which are represented by the first k terms 

k-l-1 
of S do not include aktl ; nor do they include 2 ai, for otherwise the 

i=l 
difference between this sum and some other representation of the same 
element is 0, contradicting the fact that 8 does not represent 0. Hence B 
represents at least 2k+l elements. 

Gas e (ii). Every term in S is represented by the remaining 7\: terms. 
To resolve this case we use a theorem of Moser and Scherk [3], viz. 

THEOR.IZM (Moser and Scherk). If A, B are f&de sets of ekments from 
an abelian group (G, +), such that OEA, OEB, and a+b = 0, a,A, bt-B 
implies a = 0 = b, then lA+BI 3 IAl + IBI -1, where A+B I= {a+ b: 
u<A, bcB). 

Thus, if we let A = B = (0, a,, u,, . . , , ak+lj, then IA + Bl > 2k+3. 
Under the assumptions of case (ii), every expression of the form 2ui is 

w-1 
expressible in t,he form ai + J$ &ia,~, where E~E{O, l> for 1 < i< k+l, 

i=l 

and not all the &i are zero, but Ed = 0. This shows that every ele- 
ment of A+ B ot’her than 0 is represented by S, yielding a total of at 
least 2k$2 elements represented by 8. The theorem now follows by 
induction on k. n 

Attainment of the bound for f(k) in Theorem 4, with k = 1,2,3, 
is shown by 1 (mod 2) ; 1,2 (mod 4) ; 1, 3, 4 (mod 6). 

TBEOREM 5. f(k) > 272 for 7c 2 4. 
Pro of. The proof of Theorem 4 shows that in Case (i) if the first k 

terms of B represent at least 27c elements of G, then S represents at least 
2k + 2 elements, while in Case (ii) this conclusion is invariably valid. 
Thus, the present theorem follows by induction on L, provided it can 
be shown in Case (i) that if k = 3 and the first 3 terms of S represent 
ody 5 element,s of G, nevertheless 8 represents at least 8 elements. Under 
these circumstances we may assume that a,, a*, as, a, + a2, a, + a2 + a, 
are all different, and u, = a2 + a,, a, = a, + a3, so 2a, = 0. (It is not 
possible to have further independent restrictions consistent with the 
conditions that a,, as, a3 are distinct and do not represent 0.) Also, we 
may assume a4 is not represented by a,, a2, a3. Then, as before, ad and 
al+ a,+ a,+ a4 are distinct and are not represented by al, a,, a,; the 
same is true for a, + az + a,, for in particular u1 + a, + u, = a, would imply 
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a,+ uz + a3 + a4 = 0, contradicting hypotheses concerning AS”. Thus, S 
represents at least S elements of G. The theorem follows. H 

Attainment of the bound for f(k) in Theorem 5, with k = 4, is shown 
by 1, 3, 4, 7 (mod 9). In general, precise evaluation of f(7;) is increasingly 
laborious, even though entirely elementary. We have shown f(5) = 13. 
The proof is available as an appendix in [l]. Furthermore f(6) < 19, 
and equality seems likely. (Computations in this direction a’re in progress.) 

Szemeredi [S] can show f(k) > ck2, where c is some positive constant. 
On the other hand, f(7i) < [+k”] + 1, as shown by the following two exam- 
ples (where s is any positive integer); 

(1) ai =i for l<i<$,a, =s”+i for s+l<i<2s+l (mod2s2+2s+ 
+2), where k = 2s+ 1, and the number of elements represented 
is ZJ$fQ; 

(2) ai =i for l<i<s, ai = s*-s+i for s+I < i < 2s (mod 2s2+2), 
where k = 2s, and the number of elements represented is +k2+ 1. 

It is interesting to note that in all resolved cases, f(k) can be achiev- 
ed within the class of cyclic groups. We conjecture this to be the case 
for all k. 

Finally we remark that our theorems perhaps carry over to non- 
abelian groups, but we have no results in this direction. 
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