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ON DIFFERENCE SETS OF SEQUENCES OF 
INTEGERS. III 

BY 
A. S&X&Y (Budapest) 

1. Let 93 be a set of positive integers b,-r b,-s . . . . A set of positive integers 
ul-= uz< . . . will be called an d-set relative to W if its difference set does not con- 
tain an element of 98; in other words, if 

(1) u,-uy = b, 

is not solvable in positive integers X, y, z, 
L, Lo&z conjectured that if ul-= uzc . . . is an &-set relative to the set of 

the squares of the positive integers (i.e. u,---uY = z* is not solvable in positive 
integers x, y, z) then 
(2) zx 1 = 4x) 

L 

must hold. In Part I of this series (see [IO]), I proved this conjecture in the following 
sharper form: if U~-K u2< . . , is an d-set relative to the set of the squares then 

(3) 

I proved this theorem by adapting that version of the Hardy-Littlewood method 
which has been elaborated by IS. F. ROTH in [4] and [5], in order to prove that if a 
set of positive integers ul-= uz-= . . . does not contain an arithmetic progression of 
three terms, then (2) must hold, more exactly, 

(4) = l =“Logrogx). tQs:x 
(In Part II of this series, I gave a lower estimate for 

max 2 1 
ILiST 

where the maximum is taken for those sets ul< u~-K.. , which form an &‘-set relative 
to the set 12, 22, . . . , n2, . . . . see [ll].) 

In the case of the arithmetic progressions of three terms, we may use the follow- 
ing simple fact: 

(i) A set afqrr,, afqu,, “,. , afqu, (where a is an integer and t, q, ul, u2, . . . , u, 
are positive integers) does not contain an arithmetic progression of three terms if 
and only if also the set u,, u,, . . . , U, has this property. 
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X6 A. SARICOZY 

This fact plays a role of basic importance in the proof of (4). In the proof of 
(3), I could replace this assertion by the following one: 

(ii) A set a+q2u,, a+q2uZ, . . . . a+ q2ut (where a is an integer and t, q, ul, 
u2, *.. , U, are positive integers) is an d-set relative to the set of the squares if and 
only if also the set ul, uZ, . . . , U, has this property. 

(Note that here we have q2 in place of q.) 
Starting out from (3) one might like to show that (2) must hold also for sequ- 

ences ul< u2-= . . . which form an &-set relative to certain other fixed set 
bl<bz-e..., e.g. relative to 

(5) b, = jk 

(where kg3 is a fixed integer and i=l, 2, . ..). 

(6) bi =f(i) 

(wher f(x) is a fixed polynomial with integral coefficients and i= 1, 2, . . .) and 

(where pi denotes the ith prime number and i= 1,2, . ..). respectively. 
The case (5) can be treated in the same way as the special case k =2; namely, 

the analogue of (ii) holds also in the general case kZ2 with @ in place of 42. Thus 
it can be shown by the method used in [IO] that if the set ur-= u2< . . . forms an 
d-set relative to the set (5) {also in case kz3) then (2) must hold. 

On the other hand, in cases (6) and (7), simple counter examples can be given. 
Namely, let f(x)=x”+l and u,=6, u,=12, . . . . ui=6i, . . . . Then (2) does not hold, 
however, 3 Iu,-uuy and 61 uX--uv thus tc,-u,#b,=z2+1 and u,-u,#b,=p, 
(for lSy-=x, z= 1,2, . ..). 

P. Erdos raised the conjecture that if 

G-9 bi = i2-1 

(i.e. f(x) =x2- 1 in (6)) respectively 

(9) bi = pi- 1 

(for i=l, 2, . ..). and ulcu2< . . . forms an d-set relative to the set b,< b,< . , . , 
then (2) must hold. 

In both cases the difficulty is that an analogue of (i) or (ii) does not exist; thus 
we have to modify Roth’s method. We shall be able to avoid this difficulty by using 
estimates for exponential sums of the form 

tw bzseCbia) 
;llb: 

where q is small in terms of x. (Throughout this paper, we use the notation @aim = 
= e(a) where c1 is real.) 
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ON DIFFERENCE SETS OF SEQUENCES OF INTEGERS. III 357 

Since the cases (8) and (9) can be investigated analogously, we are going to 
discuss only the case (9). The remaining part of this paper will be devoted to the 
discussion of this case, i.e. the solvability of the equation 

(11) u,-u, = p,-1. 

Consequently, we shall write briefly “&-set” instead of “d-set relative to the set 
P1-1 Pz-1 tier x;iiPi-l, **.“- 

be selected from’ 1:‘; 
let A(x) denote the greatest number of integers that can 

, . . . , x to form an &-set and let us write 

A (-4 a(x) =--y. 

We shall prove the following 

THEOREM. 

(12) a(x) = 0 ( (log log log x)3 (log log log log x) 
(log log x)” I* 

Throughout this paper, we use the following notations: 
We denote the distance of the real number x from the nearest integer by /1x1/, 

i.e. //xlj =min {x-[xl, [x] + 1 -x}. If a, b are real numbers and b=-0 then we 

define the symbol min 

(13) 

c, Cl, c2, -*. , M,, M,, . . . will denote (positive) absolute constants. We shall 
use also Vinogradov’s notation: if f and g are two functions such that gz0 and 
there exists an absolute constant C satisfying 1 f IsCg then we write f<g. 

2. In this section, we estimate exponential sums of the form 

and 

(14) P(a) = P,,,(a) = P-l 2 (1ogp)e -x . 
E&M ( 1 9 

4 
4lp--1 

(Here and in what follows, we shall leave the indices if this cannot cause confusion.) 

LEMMA 1. Let u be an arbitrary positive real number, M a positive integer for which 
A!-++--, and b, q, m integers satisfying 

(15) lab-=(logM) 
and 

(16) 1 z q < (logfw)“. 
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3.58 A. SzkK6ZY 

Then there exists an absolute constant clrQ such that 

(17) 2 
fo(Me-cl~‘OeM) for (mq+l, b) = 1 

+M for (mg+ 1, b) S- 1 

(where c, and the imp&cite constant in the error term may depend on u but not on 
by q,mX 

P-l FROOF. The conditions qlp- 1 and - 
4 

Em (mod b) can be rewritten in the 

equivalent form 

(18) p z mqfl (mod bq). 

Thus for (mqfl, bq)=l, i.e. (mq+l,b)=l, we have to show that 

2 logp = 
plkfg~l 

--$&+ 0 {Me-clvT; 
p=mq+lhnodbq) 

but this is a consequence of the prime number theorem of the arithmetic prog- 
ressions of small (-(log M)“) modulus (see e.g. [3], pp. 136 and 144). 

For (mq + 1, bq) =z 1, i.e. (mq+ 1, b)> 1, (18) impIies that (mq+ 1, b)(p. Hence, 
(mq+ 1, b) is a prime number and p=(mq + 1, b). Thus in this case, the left hand 
side of (17) consists of the single term 

logp = log (mqf 1, b) 5 log b c log (log M)” = u log log M = ~(Me-~lflogM) 

which completes the proof of Lemma 1. 

LEMMA 2. Let u be an arbitrnry positive real number, M a positive integer for 
which M- + 00, and a, b, q integers satisfying (15), (16) and (a, b)= 1. Let us 
define the integer rnb,* for (b, q)=l by 

(19) m,,,q+ 1 G 0 (mod b) and 0 5 mb.q s b- 1. 

Then there exists an absolute constant cza,O such that 

120) p(;] = Phcg(;) = 

MS -p(b)e = dbq) 
+O(Me-cJlog) for (b, q) = 1 

O(Me-+f’0BM) for (b, q) =r I 

(where c2 and the implicite constant in the error term may depend on u hub not on 
a, b, 4). 
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PROOF. By (15) and Lemma 1, 

c logP= p-l&If 4 qlp-1 
$an(modb) 

= ~~~~-le(m$)~+O(~Me-~l~lorMJ = 
Cmq+l,b)=l 

= * nn~~b~le(m~)+O((logM).Me-~l~~) = 
(mq+l.b)=l 

Here 
tmqil,b)=l 

cw ,,~m&~(-$) =zetrnt) d,(,,,&b)p(d)= (mq+1, b)=l 

= i? p(d)o,m&le (m-g * 
dlmq+l 

Let m, denote the least non-negative integer m for which dlmqf 1 holds. Then 

(23) m,q+ 1 E 0 (mod d), 

and d jmq + 1 holds if and only if 

(24) 

BY (~3)~ 

(25) 

(mq+ I)-(m,q+ 1) = (m-m,)q E 0 (mod d). 

(4 4) = 1. 
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A. SARKtiZY 360 

(24) and (25) imply that dlmqf 1 holds if and only if m -m,rO (mod d). Thus 
with respect to (a, b)= 1, the inner sum in (22) is 

+$mo+) for b/da i.e. bjd 

= 0 for bf’d. 

Hence, the inner sum in (22) is different from 0 only if b/u’; but by d/b, this implies 
that b =d, and by (25), also (b, q)= 1 must hold. Thus we obtain from (22) that 

/4b) 2 = OBmsb-1 
e(mf-) = p(b).ie(m,f-) = p(b)e(m,t) for (b, q) = 1, 

blmqfl 

0 for (b, q) > 1 

where m0 satisfies (23), i.e. m,q+l=O (mod b); hence, m0=mb,4. Putting this 
into (21), we obtain (20) and the proof of Lemma 2 is complete. 

b3fMA 3. Let u be an arbitrary positive real number, M a positive integer for 
which M- f -, a, b, q integers sati&Mg (15), (16) and (a, b) = 1, finally, p any 
real number. Then 

4 MM @+O ((M!/?l+l)Me-c~f~) for (b, q) = 1 
ZZ 

mmI+wf~ -a-) for (b, q) 5 1 

where mb,q is defined (far (b,q)=l) by (19). 
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(27) 

PROOF. Applying Lemma 2, we obtain by partial summation that 

ZZ 2 Pn.q (t) (e(nB)-e((n+1)8))+PILI,q (+) e(W+1)8). 
n=1 

5 &og(qn+l) = nlog(qn-t-1) -== Y’Mlog ((log M)” fM+ 1) = 0 (yElog M) 

and 

(with respect to (16)). 
For 1/@-=n~M, (16) implies that 

1 5 q -= (log M)” -K (log n3” = 2”(log n)u -= (log n)SU 

(if M is sufficiently large depending on U) thus Lemma 2 can be applied with 2u 
and n in place of u and M, respectively. 

Summarizing, we obtain from (27) (using Lemma 2) that for (b, q) = 1 

= 
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while for (b, g)=- I, 

since 
+Q(Me-“a-i?) = O((M1/II+l)Me-c~~ 

le(q?)-e((n+ l)P)/ = 11 -e(j?)/ = le(-B/2)-e@/2)/ = 2 /sin 7$] ~5 2x I/?1 

and the proof of Lemma 3 is complete. 

LEMMA 4. If a, b are integers such that ash, and p is an arbitrary real number 
then 

(Far ~~~~~=O, the right hand side is defined by (13).) 

This lemma is identical to Lemma I in [lo]. 
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LEMMA 5. Let u be an arbitrary positive real number. There exist constants hi&, 
c3=-0 (which may depend on u) such that if M>MO, furthermore, a, b, q are in- 
tegers satisfying (15), (16) and (a, b) = 1, finally, @ is a real number satisfying 

GW 

then 

(29) 

PROOF. We are going to apply Lemma 3. 
For (b, q)= 1, the main term in (26) in Lemma 3 can be estimated in the follow- 

ing way, by using Lemma 4 (and with respect to (28)): 

To obtain (29) from this inequality, it suffices to show that here the first term on 
the right (the O(.. .) term) is less than the second term. The first term is the greatest 
and the second is the least if I/?[ is the possibly greatest, i.e. j/II =e~e/M. Then 
the first term is 

(30) 0 ((&e-f.. 1) Me-d~ = 0(&f&-49 

while the second term is (with respect to (16) and for large M) 

qM M M 
29 (b) p (q) ecse Z- Z&s- ’ 2 (log M)” ecsm 

) Me-~c&x3bcf 

For c,=c8/4 and M-M;(u), the latter is greater than (30). and:Lemma 5 is proved. 
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LEMMA 6. If X, Y are real numbers, a, b integers and a a real number such that 
YSbsX/Y, 1 s Yr=X*14, (a, b)= 1 and 

then 

This is essentially a consequence of Theorems 1 and 3 of VINOGRADOV in [12], 
Chapter IX; see also MONTGOMERY [I], Chapter 16, and MONTG~WRY-VAUGHAN 
[2], Lemma 3.1. 

LEMMA 7. If M(=-0), q, a, b are integers and a is a real number satisfying 

(31) 
and 

(32) 
furthermore, writing 

(33) 
dS0 

(34) 
and 

15 qSzlogM 

(a, b) = 1, 

Q = M(log M)-41, 

2(logM)40 s b 5 Q 

(35) 

hold then for large M, 

(34) IP( = tp.bda)i = (logMM)2 ’ 
PRooF. 

(37) = 
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cw+j Let us write y=-- 
4 

By Dirichlet’s theorem, there exist integers A, B such 

that 

(38) (A, B) = 1. 

(39) 1 s B s 2qQ 
and 

(W 

by (39) and (40), also 

holds. 
We are going to show that these conditions imply that 

(42) B=- +b. 

Let us assume indirectly that 

(43) Bs;b. 

By (35), y can be written in the form 

(4) 
a+bj d1 

=bq+ bqQ 

where l&l-= 1. Let us define the integer U and the positive integer V by 

(45) 
a+bj U 
bq = 7’ 

(46) (U,V) = 1. 

By (32), (a-l-bj, b)=l, thus 

(47) (a+bj, bq) s q. 

(45), (46) and (47) imp!y that 

(48) b s V s bq. 

By (40), y can be written in the form 

(49) 
where l&J-= 1. 

A f% 
y=jjf2Bqe 

(44) and (49) yield that 

II+ 4 A 4 y=v 64Q=-i---Y 
B 2BqQ 
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hence, witb respect to (34) and (481, 

m * Al I41 --- v B/ w <-L+15 
d bgQ+2BqQ bqQ 2&Q - 

On the other band, we obtain from (38), (43), (46) and (48) that 

thus 

w 
(50) and (51) yield that 

JUB-VA\ 1 
VB s FB. 

1 1 1 
bqQ+-’ 

1 1 
i%-= 2BV ~-=----’ bqQ 

hence, with respect to (34), (43) and (48), 

Thus tbe indirect assumption (43) leads to a contradiction, which proves (42). 
Let us write X= qM+ 1, Y= (log M)4a. Then for large M, 

(52) 1 S Y = (log M)4O i (A4+ l)l’4 S Xl”, 

furthermore, by (34) and (42), 

(53) B> ; b EZ (log M)4o = Y, 

finally, by (33) and (39), 

(54) B 5 2qQ = 2qM(log A4)-41 5 2(qM+ l)(log AcZ)-~~ i: 

-= (qM+ l)(log M)-@O = x/Y. 

In view of (38), (41), (52), (53) and (54), Lemma 6 can be applied with qM+l, 
(log M)40, A, B and y in place of X, Y, a, b and CX. With respect to (31), we obtain 
that 

I&bf+*(Y)I = $f+1 j ($q +z (qM+ l)((log M)4°)-“2(10g (qM-t I))17 5 

5 ((log M)M+ l)(log M)-20(10&J ((log M)M+ 1))17 -K 

-SC (log M)M(log M)-20(log M)” = M(log M)-“. 
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Putting this into (37), we obtain that 

Ih,&)l * f ;fo’ MOog MF2 = 
M 

J (log Ml2 

which completes the proof of Lemma 7. 

LEMMA 8. There exists an absolute constant c,( 4) such that for nS3, 

This lemma is well-known; see e.g. 131, p. 24. 

LEMMA 9. Let q, M be positive integers, R a real number such that 

(55) 
and 

(56) 

q5logM 

3zzRRlogM. 

Let S,,, denote the set of those real numbers a for which OSUS 1 holds and there 
do not exist integers a, b such that 

(57) (a, b) = 1, 

(58) lzzb-=R 

and 

(59) 
1 R 

-= ;i?‘loglog R ’ 

Then for aE S,, M and large M, 

(60) 
qM 1ogIogR 

Ih4,,(4 e -- 
(P(q) R * 

PROOF. Let US define Q by (33). By Dirichlet’s theorem, for all ac ,SR,M, there 
exist integers A, B such that 

(611 MB) = 1, 

(62) IsBsQ 
and 

(63) 
A 1 I I a-B -F 

If 2(log M)*o 5 B, then Lemma 7 can be applied, with A and B in place of o 
and b, respectively. We obtain that 

(64) 
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By (56), the right hand side of (60) can be estimated in the following way: 

(65) 4. * 
rp(q) 

M 1oglogR >MIoglogR ~ *1og10g10gM M 

R = R - log M > (log M)” 

for sticiently large M. (64) and (65) yield (60). 
If 

(66) B -=c 2(log M)“O 

and M is large then we may apply Lemma 5 with a= A, b= B, B = u -$ and 

u=41. Namely, for large M, (15) and (16) hold by {55) and (66). Furthermore, by 
(63). 

which implies (28) for sufficiently large M. Thus, in fact, all the assumptions in 
Lemma 5 hold, Applying Lemma 5, we obtain that for large M, 

(67) 

The right hand side is maximal for I/II 5;. Thus for RS B, we obtain by apply- 

ing Lemma 8 that 

(with respect to R S3). 
Finally, if B-c R then CCC S,,, implies that 

W-9 

which yields also Ifll=-$ since it can be shown easily that 

R 
log log R 

bl 

for R23. Thus we obtain from (67) and (68) that 

which completes the proof of Lemma 9. 
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3. For arbitrary positive integers M, q, let 

(49) %q> u2q, *.- 3 urq 

be a maximal &-set selected from q, 2q, . . . , Mq, and let 

(70) 

In this section, we estimate this function PM,q(~). 
For an integer b and positive integers m, x, let A(,,,,)&) denote the greatest 

number of integers that can be selected from b+m, b-k2m, . . . $ b+xm to form an 
d-set (so that &,,)(x)=A(x)). 

LEMMA 10. For any integers b, d and positive integers m, x, we have 

PROOF. This follows trivially from the fact that the numbers b+ ulm, b+u,m, 
,.., b+u,m form an &‘-set if and only if also the numbers d+u,m, d+u2m, ..,, 
dSu,m do. 

By Lemma 10, we may simplify the notation At,,,)(x) in the following way: 
let us write A,(x) instead of ACb,,,)(x), i.e. let 

Furthermore, let 
A,,,(x) = A(z,,,)(x) (for b = 0, rtl, 32, . ..). 

a,(x) = u, 
X 

so that A(x)=A,(x) and a,(x)=a(x); moreover, T=A,(M) in (69) and (70), 
thUS 

A&W 
(71) F(a) = FM,~@) = 2 4uk4. 

k=l 

Lemmas 11 and 12 follow trivially from the detitions of the functions A,(x) 
and a,,,(x), respectively. 

LEMMA 11. If m, x and y are positive integers such that x 5 y then A,,, (x) s A,,, ( y). 

LEMMA 12. For arbitrary positive integers m and x, we have a,,&)~ 1. 

LEMMA 13. For arbitrary positive integers m, x and y, we have 

(72) A&+Y) s -&(x)+A,W, 

(73) Am 0~) 5 x4,, (~1, 

(74) a,(v) 5 ambQ, 

(75) 
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PROOF. By Lemma 10, the greatest number of integers that can be selected 
from m, 2m, . . . . xm and (x+l)m,(x+2)m, . . . . (x+y)m to form an &-set, is .4,(x) 
and A,(y), respectively; thus the greatest uumber of integers that can be selected 
from m, 2m, . . . . xm, (x+l)m,(x+2)m, . . . . (x +y)m to form an d-set, is %4,(x) + 
t&(y) which proves (72). 

(73) is a consequence of (72). 
Dividing (73) by xy, we obtain (74). 
Finally, by Lemma 11 and (73), 

-! ) 
Am (Y> = c+ 1 &Iy) = (x+y)--. Y 

Dividing by X, we obtain (75). 

LEMMA 14. Let q, b, t, A4 be positive integers, a an integer, CL, @ real numbers 
such that 

(76) 
Let 

P(a) = F$&) = 
so that if (a, b)= 1 then 

(77) F&,(u) = j$4iQl fofor b = 1 
for b z=- 1 (where (a, b) = 1). 

Then there exists an absolute constant c, such that 

(78) I&,,C+f’&q@Y 5 (ab,(t>-aa,(M)~)+c,(lBl~ab,(t)+a,(t))tb. 

PROOF. We are going to show at first that 

(79) F~,d”) = $j 8 .j ,_ 2 
S 1~ lJs;u,-=j+tb 

e(auk)+O(a,(t)tb). 
u,rs(modb) 

Let us investigate the coefficient of e(mk) on the right hand side. 
If tb%a,Sn?i then we account e(olz+) exactly tb times, namely for the following 

values of j: 
j = u,--tb+l, u,-tb+2, . . ..uk. 

Thus the coefficient of e(cqJ is 

in this case (and its coefficient is the same on the left hand side). 
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If 
m 1 5 u, -z tb 

then we account e(& on the right of (79) for j=l, 2, . . . , u,, thus its coefficient is 

1 1 (OS) juk.-- -z rho- = 1 
tb tb 

OR the right and 1 on the lefi of (79). For the numbers I(~ satisfying (801, the numbers 
u,q form an d-set selected from q, 2q, . . . , tbq thus in view of (73) in Lemma 13, 
their number is 

5 A&b) 5 A,(t)b = a,(i)tb. 

These facts yield that, in fact, the error term in (79) is O(a,(t)tb). 
The term e(oq) in the inner sum in (79) can be rewritten in the following way: 

e(au,)=e((++~)u,) =e(F)e(j?u,)= 

=e (y) eW>e(B(uk-j)) = e [y) e(Bj)(l+O(IB(uk-I’)I)) = 

since lu,-ji -C tb in the inner sum, and 

le(y)- I / = le(1;/2)-e(-:~i2)1 = 12 sin7q~ I 2/ngj = 2njyl 

for any real number “I. 
Thus the inner sum in (79) can be estimated in the following way: 

= e y e@j)+O(I,kltb) 
H 1 I 

2 1. 
jly-=j+tb 

Let us define the integer Y by 
uk=s(modb) 

v-=jsv+b, v = s (modb). 

Then for the numbers zk satisfying j~u,cj+tb and u,rs {mod b), the numbers 
uk q form an z&‘-set selected from vq + bq, vq + 2bq,, . . . , vq + tbq. Thus by Lemma 10, 

2 
jS$-zj+tb 

1 s A(oq,bq)W = Ab&) = a,,(f)t. 
u,=s(modb) 

Hence, defining D(j, t, b, s) by 

2 
jSU,-=j+tb 

1 = %#)t--DtX t, b, s), 
u,=s(modb) 
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we have D(j, t, q, S) 20. Putting this into (81): 

Thus (79) yields that 

j, t, 6, s))+O((gjub,(t)t2b)}t 

+ O(a,(t)fb) = 

fQ (~.b~~*IBla,,(t)t2b)+Q(a,(t)tb) = 

= Gi,,(a)-~s~ j+@-) (D > ( e j D j, 4 b, S)e”((IPiMab,(t)+a,(t))tb). 

Putting here cc=P=a=Q, we obtain that 

$ i .zD(j, t, b,s) 4 (ab,(t)-aaa(M))M+c,a,(t)tb. 
s 13 1 

Thus (82) yields that 
IGf,qw-G,4WI -== 

-== A 2 .$D(.i, t, b, ~)+c7(1PI~~b4(t)f~,(~))tb 4 
S 1J 1 

< ((ab,(f)--&W)M+ c,a,(t)tb)+c,(lBlMab4(f)+aq(f))tb c 

-= (~b,(t)-~,(~))~+cQ(181~ab,(t)+~,~t))tb 

which proves Lemma 14. 

4. (12) will be deduced from a lower estimate for 

in terms of a,(N) where t=o (M) and R- + -, however, t is relatively large, 
R is small in terms of M. 
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LEMMA 15. Let t, M, q be positive integers, R a real number such that 

(83) tbf, 

(84) q 5 log M, 

(85) 35RRiogM. 

Then there exist absolute constants c,, cl0 such that for sujkiently large M, 

OW (a4(M))2 5 cg{(a*(t)-an,(M))2RlogRf 

+a~(t)(a~(t)-a,(M))+(a*(t))” ($log R+& (logii R)2)+ 

+ a*(t) e-clo~iGG + log 1T R 

PROOF. We are going to use a modification of that version of the Hardy- 
Littlewood method which has been elaborated by K. F. ROTH in [4] and [5]. 

P(X), F(a) and F*(a) will denote the functions defined by (14), (71) and (77). 
(We recall that ul, uq , . . . , uA4 cM) in (71) denote integers such that u,q, u,q, . . . , uA4 cMJ q 
form a maximal &-set selected from q, 2q, . . . , Mq.) Then 

(87) f F(a) F(- a) P(N) dcc = 
0 

= 2 logp = 0, 
X,Y,P 

* -v +“-l=o 
y * P 

namely, 

u,--u,+p--l = 0 
B 

or in equivalent form, 
u,q--uyq = p-l 

is not solvable, since the numbers ulq, uzq, . . . , uA,cM)q form an d-set. 
Let us write 

693) 

then by (89, 

&’ R 
MloglogR’ 

F-4 
for large M. 

1 log M 
z 

-=6s 
MlogloglogM 
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BY (87), 

hence, 

/ ]s,F(x),2P(cc) drl = 1 j;s,F(Y.),2P(a) d31, 
--6 +S 

(90) j6,F(a),2P(a) dcr 5 &n),” ,P(cl), da. 
-s +S 

We are going to give a lower estimate for the left hand side and an upper es- 
timate for the right hand side. 

In order to estimate P(a) for Icrj~,S, we apply Lemma 3 with u=l, a=O, 
b=l ((16) holds by (84)). Then mb,q= 0 in Lemma 3, thus we obtain with respect 
to (89) that there exists an absolute constant cIO such that for large M and 1% 15 6, 

M1ogM 
log log log A4 

p,JilogM < &fe-clol”OB 
1 

Thus we obtain applying Parseval’s formula that 
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since 

(92) a,(M) s a,(t) 5 a*(t) 

by (74), (83) and the definition of the function a*(t). 
For any complex numbers u, V, we have 

s lu-ullUj+ luljfi-al = lu-uI(IuI+/uj) = 

= lu-uj(l(u-u)+ul+Iu/) 5 ]zr-u](~u-u~+2lul) = 

Thus 

(93) 

= lu-v~2-t-2~u-L)IIuI. 

For a=& 6= 1, Lemma 14 yields with respect to (92) that 

f 
(a*(t)-a,(M))-M+ q,u*(t)t for lcll S l/M 

s (a*(t)-ua,(M))M+c,, Ialu*(t)tM for l/M 5 lcll ~5 6. 

Thus using also Lemma 4, we obtain from (93) (with respect to (88), (89), (92) and 
the inequality 

(94 (A fB)2 5 2A2+2B2 
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where A, 3 are arbitrary real numbers) that 

-=x (a*(t)-a,(M))‘M’log R+(a*(t))” (Mlog R-I-t” (log;Ro;R)2) + 

By Lemma 4 and Parseval’s formula, we have 
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Here for large M, 

and y=x+z satisfy the conditions 15x, y, ZZM, 

x-y +z=O. Thus with respect to (85) and (92), 

(91), (95) and (96) yield that 

-c13 c;o(q) 4((,*(t)-a,(~))“M2log R+@*(t))2 (tMIogRft2 (logfgR)J + 

+a*(a)(a*(t)-ua,(M))M2+u*(t)M2e-c~o~}. 
Now we are going to give an upper estimate for the right hand side of (90). 
If a, b are integers such that OzaSb-1, 1sbsR and (a, b)=l then let 

us denote the interval 

-- ; 
3 

by I,,, (so that &= [-S +6]) and define the set S,, M in the same way as in Lemma 
9. Then obviously, 

P. l-61 c { u ( u L,b)}U&,, 
2sbzR lsasb-1 

(a, b)=l 

13 Acta Mathematics Academiae Scientiarum Hungaricae 31, 1978 
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thus 

(98) 
l-8 

j- ]F(u)I”]P(u)I Au 5 
+a 

For aEZ,,,, we use Lemma 14 to estimate IF(a)], while (P(a)1 can be estimated 

by applying Lemma 5 with u=2, x=t+j?, since (15) and (16) hold by (84), ($5) 

and bSR, and also (28) holds for large M by I~IsS and (89). Applying these 
lemmas, we obtain with respect to (92) that if ct EI,,, (where 1-z 6~ R) then 

PIa 5 (~b,(~)--a,(~))~+c,(lPI~ubq(f)+uq(f))tb 5 

5 (ad-n,iM))M+c,(iBIM+l)a*(t)tb 5 

L 

(a*(l)-ua,(M))M+2c,a*(t)rb for IpI 5 -& 
s 

(a*(t)-a,(M))M+2c,lBlMu*(t)tb for IpI =- & 

and (29) hold. Thus in view of (85), (88), (89) and (94), 
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hence 

(99) 
[RI WI 

bzj 1,.4b-lE”*b -Cc ,-&,~~~l ~(~~~(q)i(YI(r)--n,tM))2M”10gR-t 
(a, b)=l (a, b)=l 

t(o’(f))‘r’b2(log~gR e 

-cc ~((a’(t)n,(M))2M’RlogR+(a’(t))‘r’ R5 
(log log R)2 }. 

Finally, to estimate Es, we use Lemma 9 and Parseval’s formula: 

<<qM logy i IF(4,“& = 
v (4) 0 

qM loglog R log log R =- 
v(q) R 

a,(M)M 5 La”(t) M2 
v (4) 

R 

(with respect to (92)). 
(90), (97), (98), (99) and (100) yield that 

+(a*(r))+Mlog Rfl” (log~gR)2)+o’(t)(a*(t)-Qq(M))M2+ 

+ Q*(t)M”e-‘J’OpM} -ec 

--& 
l 

(a*(t)-aq(M))2M”RlogR+(a*(t))2t’ (iog,t;R)“)f 

log log R -t”Q’(f)M’ R 
cp (4) 

or in equivalent form, 
(uJM))~ e (a*(t)-c+(M))“R log Rt 

+a’(r)(a”(t)--a,(M))+(a’tt))2 ($og R+-$- (,og;; R)2) + 

( 

- IoglogR -tax(t) p,o)‘logM+ 
R 1 

(with respect to (92)) h’ h w K completes the proof of Lemma 15. 
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5. In this section, we will complete the proof of our theorem by showing that 
Lemma 15 implies (12). 

C will denote a large enough (but fixed) constant and x will be an arbitrary 
integer which is sufficiently large in terms of C. 

Let us write 
z= _t 

i 

loglwx 

6 log log log X 1 
and define the positive integer N by 

(101) 
and 
uw 
so that 

[(log log x)S]zIN 

N 5 x == NS [(log log x)~]‘, 

N = [ [(log jtg x)5]z 1 Klog 1% w. 
For x-t+-, 

(103) 

hence 

Z 1 loglogx 
- 6logloglogX’ 

log [(log log x)5]Z = z log [(log log x)5] - 

1 loglogx 
- 5z10g10g10gx - 5*- 6 log log log x 

log log log X = 

= $loglogx 

thus for large x, 

(104) [(log 1% m < .+lw = logx. 

(102) and (104) imply that for large x, 

(105) x 2 N =r, x-logx. 

Let us define the positive integers to, t,, . . . , tZ- 1, t, in the following way: 
for k=O, 1, . . . . Z, let 

N 
rk = [(loglogX)5]Z-~’ 

so that t,=N. (In fact, these numbers are positive integers by (lol).) Furthermore, 
(104) and (105) imply that for large x, 

(106) x 2 N = tZ z tZel >...=- tl z- t, = 
N 

[(log log x)“]Z ’ 
x-log x 

’ logx 
= G-1 (=-G). 
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For uz3, let us define the function f(u) by 

log U log log U 
f(u) = t,2 

and for k=O, 1, . . . . Z-1, let 

R, = (f(C))yf(k + C>)-’ log log (f&S c>)-‘. 

Finally, we define the positive integers q,,, ql, . . . , qzml, qz by the following 
backward recursion: 

Let &=I* If k’, 42-1, ..., qk+l have been defjned (where OS&Z-I) 
then let qk denote a positive integer for which 

(107) 

and 

qk+llqk 

UW ]&ksRR, 
qkfl 

hold and a,,(fk) is maximal; i.e. using the notations of Lemma 15 (with tk, qkfl 
and R, in place of t, q and R, respectively), let us define qk by (107), (108) and 

uw aqk(rk) = a*(r) = 1=52$ abqk+I(tk). 
-= k 

We are going to show by straight induction that if C is large enough and x 
is sufficiently large in terms of C then for k=O, I, . . . , 2, 

(1 IO> 

For k=O, (110) can be written in the form a,,(t,)S 1 but this holds trivially 
by Lemma 12 (independently of C). 

Now let us suppose that (110) holds for some positive integer k, satisfying 
OskSZ-I. We have to show that this implies that also 

holds. 
Let us assume indirectly that 

We are going to deduce a contradiction from this indirect assumption by using 
Lemma 15. For this purpose, we need some estimates for the function f(u) and 
the parameters Z and R, . 

Obviously, for large U, the function f(u) is decreasing and 

(112) lim u-i- f(u) = 0. 
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Furthermore, if u- i- 30 and t- 1 then 

(113) f(u) -f(u) (for II -+ 30, ; - 1). 

For ~-i-a, 

(114) 1% (f(W - logu” = 2logu {for a -+-) 
and 
(115) log log(f(u))-r - loglogu (for ti 4 + a). 

By Lagrange’s mean value theorem, for u&3, there exists a real number u such 
that 

f(u)-f(u+l) =-f’(v) and u 5 ZI 5 ufl. 

Thus for U- +m, we obtain with respect to (113) that 

(116) f(u)-f(u+l) =-f’(r) = -log log v - If 2 (log V) (log log u) _ 
V3 

_ 2 (1% u) (log log 0) = 2 f(u> - ,f(u) (for (,( 

79 
- + -). 

V u 

(103) implies that 
(117) log 2 - log log log x 
and 

log log z - log log log log x 

(for x- +-). Thus with respect to (1033 and (113), we have 

(118) f{Z+C) -f(Z) = l”gz;flogz N 

rv 36 (log log log @(log log log log x) 
(log log x)” * 

Finally, if C is large enough and k=O, 1, . . . , Z- 1 then with respect to (115), 

(119) Rk = (f(C))l’z(f(k+ C))-‘log log (f(k+ C))-’ -= 

(k+C)” 
-=z (fw)l’P log (k + C) log log (k + C) .2loglog(k+C) = 

= 2 (fw)y &$) 

and 

(120) R, > (fW))1’2(f(k+c))-1 +oglog(k+C) = 

= &f(C))l~~ ,d,“(;y;) . 
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Furthermore, by (112) and sincef(u) is decreasing for large U, we have also 

and 
Rt -= (f(k+ C>)-’ log log (f(k+ Cl)-’ 

R, 2 (f(k+C))“2(f(k+C))-110glog(f(k+C))-1 = 

= (f(k + C))-1’2 log log (f(k+C))-i 

for large enough C. Hence, in view of (112), (114) and (115), we obtain for large 
Cand k=O, 1, . . . . Z-l that 

(121) 

and 

(122) 

;log(k+C) c= log R, -= 3 log(k+C) 

;loglog(k+C) -=z log log Rk -z 2 log log (k f C). 

We are ready to show that if C is large enough and x is sufficiently large (in 
terms of C) then Lemma 15 can be applied with tk, fk.,.l, qktl and R, in place of 
r, M, q and R. In fact, (83) holds obviously by the definition of the numbers 
to, 11, .a., tz . Also, R s 3 holds trivially for large C by (12 I). Furthermore, 

Z-1 
qi 

Z-l 

q&cl = 42 17 - = 
j=kCl ‘Yj+l 

17 4i, zlRjr 

j=k+l qj+l j=O 

thus to prove that both (84) and (85) hold, it suffices to show that 

Z-l 

fl Rj 5 tog t,+,(= log M) 
j=O 

or in equivalent form, 
z-1 

(123) ~ log Rj ~ log log fk+l. 
j=O 

BY UW, 

(124) 
5 log log t,,, > log log 1; =- - log log x 
6 

for large x. On the other hand, by (103), (117) and (121), we have 

Z-l Z-l 

2 1OgRj < 3 jz log(j+C) C= 3ZlOg(Z+C) < 
j=O 

1 loglogx r= 4ZlogZc 5.- 
6 log log log x log log log x = + log log x 

for large C and x. (124) and (125) yield (123). Thus in fact, Lemma 15 can be applied; 
we obtain that (86) holds. To deduce a contradiction from (86), we have to estimate 
a,(M) and a*(t)-a,(M). 
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Using the notations of Lemma 15, (110) and (111) can be rewritten in the form 

(126) 

and 

(127) 
a 

9 

(M) ,f(k+l+C) 

f(C) * 

By (74) in Lemma 13, r=tk/fk+l=M implies that 

(1W 0 s ~4r+lC~k)-~q,+l Ii+1 (Y ) = a,(t)-a,(M) 5 c?(f)-a,(M). 

With respect to (113), (126), (127) and (128) imply for large C that 

(129) a*(t) z a,(M) z=- 2 _1. U”(Y). 

Furthermore, (126) and (127) yield with respect to (113), (116) and (129) that for 
large C, 

(130) a*(t)-aq(M) -== 
f(k+C) f(k+l+C) 3 f(k+C) 

f(C) - f (a Km k+C -= 

4 f(k+lfC) 
-= kSC f(C) 

-= &a,(M) 5 

By (118), (127) and (129), we have 

(131) u*(t) z a,(M) s- 
f(k$l-tC) f(z-kC) 

f(C) s -fT’ 

35 (log log log X)3 (log log log log X) 
=-m (log log X)2 

for large X, while in view of (106), 

c: e-c,, i- 1WG = e--ClafloeX = 0 ( (log log log x)3 (log log log log X) 
(log log X)2 1 

for x-f-. (131) and (132) yield that for fixed C and large X, 

(133) e-QJlogM -f(C)a*(t). 
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Finally, by (113), (120), (122), (127) and (129), we have 

(134) 
log log R < 2loglog(k+C) = 

R 

= 4(f(C))-li2f(k+C) = 4(f(C))l’S y(g) -=z 

-= S(f(C))li” f’“,:y -= 5(f[C))%,(M) 5 s(f(C))%*(t) 

for large C. 
With respect to (119), (121), (122), (128), (129), (130), (133) and (134), (86) 

yields that 

+ a*(t) ~Lm+(w))2 ([(log~gx)Sl.3LOg(k+C)f k+C 

+~*~t)(f(C>~*(t)+5(f(C))“2~*(t))). 
Dividing by (~*(t))~ and with respect to (103), (112) and (117), we obtain that if 
C is large enough and x is sufficiently large depending on C then 

$ -= 96~ (fW))i’z + & + ~9 (log :o, x)5 -3 log(Z+C)+ 

+ c9 (log lfx)lo l 2”(fw))“‘YZ+ W0+c9f(C) + 5C9(fw)y’2 -= 

< ‘+1, 7c, 
30 30 (log log x)” 

log z+ 2164fw))5’Z 1 1 
(log log x)lO 

*ZlOf-+- < 
30 30 

2 8c9 
-= E + (log log $5 (log log log xl + 

21”c,(f(C))~‘2 1 loglogx 
(log log x)10 ! 3 log log log x 1 

I0 ( 

2 1 2%g(f(c))5’2 1 
-=iF+30+ 510 * (log log log x)10 

Thus in fact, the indirect assumption (111) leads to a contradiction which proves 
that (110) holds for k=O, 1, . . . . Z. 
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Applying (1 IO) with k=Z, we obtain with respect to (118) that 

(135) a&) = a,(N) = a(N) I f(j;;)c’ < 

37 (log log log x)“(log log log log X) 
--f(c) (log log xy ’ 

provided that x is sufficiently large. 
Finally, (135) yields by (75) in Lemma 13 and (105) that 

a(x) I 1+; 0(N) 5 2a(N) ‘= f(c) 
( 1 

74 (log log log x)3 (log log log log x) 
(log log x)” 

which completes the proof of our theorem. 

6. Tn [6]--[9], K. F. ROTH generalized the method developed in [4] and [5], 
in order to investigate the solvability of systems of equations of the form 

Y 
~ 31i j l l ,J  = 

j51 
0 (i = 1,2, . . ..fi) 

where the numbers aij are integers satisfying 2 iYij =O, and u,-= uz -= . . . is an 
j=l 

arbitrary “dense” set of positive integers. 
By using that extension of Roth ‘s method which has been elaborated in this 

paper, one may investigate also the solvability of systernr of equations of the more 
general form 

where the numbers Clij and pik are integers again, 2 ~ij =0 , u1~u2-=... is an 
j=l 

arbitrary “dense” set of positive integers and the sets biK) -C bik)~ . . . (where k= 
= 1, . . . , x) are fixed sets of positive integers. 
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