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8 1. INTRODUCTION 

Let f(n) denote the least integer so that in the interval (n, f(n)] there 
are distinct integers al, . . . . a, with ilat for i= 1, . . . . n. Thus, for example, 
f(l0) = 24 as can be easily seen by letting 

al=ll, aa=22, aa=21, u4=16, u5=15, ae=12, ~27~14, 

@=24, &=18, alo=20. 

(The fact that f( 10) > 24 follows from the observation that there are only 
9 composites in the interval [ll, 241.) 

More generally, if m is any positive integer, let f(n, m) denote the least 
integer so that in (m, m+f(n, m)] there are distinct integers al, ‘.., an 
with i]a+ for i= 1, . . . , a. Thus f(n) =n+f(n, n). Let L(n) denote the least 
common multiple of 1, . . . , N. Then it is clear that f(lz, m) depends only 
on the residue class of m modulo L(n). 

We shall be concerned with the following problems: 

1. Find estimates or an asymptotic formula for f(n). 
2. For each n, estimate the maximal value of f(n, m). 
3. For each n, estimate the average value of f(n, m). 

On Problem 1 we show that, perhaps unexpectedly, as n + do, 
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f(n)/% -+ 00 (Theorem 1). We also show f(n) < n(log n)*‘s (Theorem 3) 
and that this result is nearly best possible (Theorem 2). 

On Problem 2 we show that maxm f(n, m) <r&s (Theorem 4). We 
cannot show maxm f(n, m) >f(n, n) so Theorem 2 gives our best lower 
bound for maxna f(n, m). 

On Problem 3 we show that there is a positive constant oc such that 

n(log n)@ c I no=l l Ltn,f( 72, 4 < nl+O(l) 

for large n (Theorems 5 and 6). 
The methods we use for the lower bound theorems on f(n) involve 

results on the function yl(z, y), the number of integers not exceeding x 
composed only of the primes not exceeding y. In particular we shall be 
concerned with estimates for y(x, y) for “very small” y, that is, y c log 2. 

All of our upper bound results for f(n) and f(n, m) rely on a theorem 
of KGnig [7] and Hall [5]. We proceed now to introduce the terms needed 
to state the theorem. If C is a bipartite graph between the disjoint sets 
I, J (that is, the vertex set of C is I u J and the edge set is contained 
in I x J) and if U C I, then the span of U is the set of points of J connected 
to some point of U by an edge. One can similarly define the span of a 
set ?’ C J. If a E I w J, the valence of d is Ispan (a}l. To say that G 
contains a match&g of I into J means that the edge set of G (which is 
a relation from 1 to J) contains a 1- 1 correspondence of I with a subset 
of J. 

THEOREM (K.ijNICt, HALL). Let C be a bipartite graph on the disjoint 
jinite sets I and J. Suppose G does not contain a matching from 1 into J. 
Then both 
(i) there is a u E I and a v E J with valence u<vaIence v; 

(ii) there is a U C 1 with 1 Uj > Ispan U[. 
The Konig-Hall theorem is sometimes referred to as the “marriage 
theorem”. 

Our lower bound result for the average value of f(n, m) relies on the 
recent work of Tenenbaum [ 121 for the density of the integers which 
contain a divisor between n/2 and IZ. 

We take this opportunity to thank Harold Diamond for several inter- 
esting discussions concerning the contents of this paper. 

$ 2. LOWER BOUNDS FOR f(n) 

For each y, let y(y) denote the set of positive integers not divisible 
by any prime exceeding y, Let yl(z, y) denote the number of members 
of y(y) which do not exceed x. 

LEMMA 1. Let n be a natural number and let k, y be positive quantities 
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such that 1 <kc y and 

(1) wh Y) -‘tuWly, Y) =-v(nk, Y) -Y@, Y). 

Then f(n) >Izk. 

PROOF. Assume f(n) Q nk. Let I= (nk/y, r;] n y(y), J= (n, nk] n y(y). 

Let i=\II, j.=IJ\, I={al, . . . . ad}. Then (1) implies i >j. The assumption 
f(n) ink implies there are distinct integers bl, . . ., bd E (n, nk] with allbl for 
I<,lgi. Note that br/algnk/alcy, Thus since al G y(y), we have bl q(y). 
That is, bl, . . . . br are all in J. Hence ;<j, a contradiction. [II 

THEOREM 1. limn+a, f(rt)/n = Co. 

PROOF. Let k> 1 be arbitrary, but tied. Let y= k3. It is known (Specht 
[ll]) that 

y(z, y) = c1(log a)=“(y) +cz(log X)+-l + o((log +(9)-l) 

where 

Cl = MY) ! * g 1% PI-l, c2 = w~Y)/2)D~v h3 P, 

and p runs through primes. Thus 

y(n, y) -y(n/k2, y) = s(log n)n(u) + cs(log n)n@)--l- cl(log(n/k2))“(“) 
- c2(log(n/k2))z@+-1 + o(log n)n@)-1 
= 2clrr(y)log k(log n)n(y)-1 +o(log n)n(w)-1, 

and similarly 

y(nk, y) - y(n, y) = cm(y)log k(log n)n(g)-1 -t o(log n)n(g)-l. 

We thus have for all large n. that (1) holds. Hence Lemma 1 implies 
f(n) >nk for all large n. Since k is arbitrary we have our theorem. q 

The above argument depends on a sharp error term for y(z, y) available 
for bounded y. The existence of such a sharp formula for y(z, y) (in the 
case y=3) was first discovered by Ramanujan (of. Pillai [S] and Hardy 
[6]). To improve Theorem 1 to the actual exhibition of an explicit function 
which tends to infinity with n and which is a lower bound for f(n)/n, the 
above method would need a sharp formula for y(z, y) for y + 00 slowly 
but explicitly. Note that the asymptotic formulas given by Ennola [2] 
do not have a sharp enough error term for this purpose. Possibly sharp 
enough formulas for y(x, y) could be obtained, but we do not make this 
effort here. Instead, we find a different method to attack the problem 
of lower bounds for f(n). In our next theorem, we use an asymptotic 
formula for log y(z, y) given by de Bruijn [I] to obtain a substantial 
improvement on Theorem 1. The reason we can make do with a non-sharp 



approximation of yr(z, y) in the proof of Theorem 2, while in Theorem 1 
we need a sharp error term is the observation that knowledge about f(m) 
gives one knowledge of j(n) for all n>m. For example, the fact that 
f(lO)= 24, as seen in our opening example, can be shown to imply that 
f(lO0) > 240. We thus are able to get a good lower bound for all f(m) by 
first tiding a good lower bound for some f(n). The method exploits the 
geometry of the graph of log @c, y) for fixed y (cf. Pomerance [9-J). 

THEOREM 2. For n> 3, f(a)> (2/l/e+o(I))n V’log m/loglog nd 

LEMMA 2. For every E> 0 there is an Q(E) such that for all z>z&), 
there is an integer m E [SC, s?+‘] with 

(2) f(m) > (1 - e)( S/y’e)m o/log m/loglog rn. 

Before we prove the lemma, we show how Theorem 2 follows from it. 
Let E > 0 be arbitrary and let n be a positive integer. Let z= (~n)~‘(~+“. 
Thus if n is sufficiently large, the lemma implies there is an integer 
m E p, xl+s] f or which (2) holds. Let k= [n/m]. In the interval (n, f(n)] 
there are distinct integers bi, . . . , b, such that iklbs for i = 1, . . . , m. Let 
CQ = bg/k, Then al, . . . , a, are distinct integers larger than 1~1 for which 8’Ja 
for i=l, . . . . m. Thus max a$ >f(m), so that 

f(n) > max bi 2 k!(m) > ( 1 - E)( 2/l/e) Icm I/log m/loglog m 
lGi<m 

>(l-~)~(2/l/e)(n-m) I/log n/loglog n 

> (1 - .a)s( 2/ve) n flog n/loglog n 

for all sufficiently large n. We thus have Theorem 2. 

PROOF OF LEMMA 2. For each y > era, let 

By de Bruijn [l], 

(3) wa)= (log(1+ fJ -& +log(l+ ;) -i&) * (1++&)) 

=((“W+~($)~&+(lop(;)+o(:))~Gg)*(I+o(&)] 

=~.(log(~)+lio(~)).(l+o(~)) 

+-log(;) +1+0&y)) 

uniformly for all y> era, w E [(O-l) y log y, y log y]. 
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NOW let h@(w) = h(w) be the function whose graph is the upper boundary 
of the convex hull of the graph of g(w). Then 

(4 h(w) = &(log(;) +1+q$.y)) 

uniformly for 7~> el*, w E [(O. 1) y log y, y log y]. Indeed, 

g(w) < w.4 < -c ( 0 loglog y 

1% Y 
log ; -l-SC- 

l%Y > 

where c is the absolute constant implicit in (3). Since g(w) is a step function, 
we have h(w) piecewise linear. Thus h’(w) exists everywhere but for a 
finite set of points which we shall call ue&z points. A vertex point w 
satisfies g(w) = h(w). Also ew is an integer if the vertex point w is not an 
endpoint of the interval. 

We now show that if w is not a vertex point, then 

(5) h’(w) = ~y(l+~(~~)) 

uniformly. Indeed for each S > 0 and w such that w is not a vertex point 
and 

(O.l)ylogy<(l-6)w, (l+B)w<ylogy, 

we have (since A is concave down) 

Hence by (9, 

Y - 
6w log y ( 

log((l+6)w)-log W-i+0 (qg)) =s(w) 

< 6wlogy ( 
log w-log ((l-C?)w)+o &y)) , 

~~(l+o~~~+o~~))~h~(w)<~(l+o(~)+o~~)). 

Thus choosing d = I/loglog y/log y, we have (5). 
Let O<E < & be arbitrary. Let b be a constant to be chosen later with 

0.1 <b < +. Then for all sufficiently large y, depending on the choice of E, 
we have by (5) that 

~(bylogy)>K({l+E)bylogy) 

if neither argument is a vertex point. Thus there is a vertex point W,= W 
satisfying 

bylogy< W<(l++ylogy. 
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Let my=m=ew, an integer. Let a be a positive constant to be chosen 
later, and let 

A = (&)log y+ log a, B = (,t)log y - log a, 
dl=gtW)-g(W-A), dz=g(W+B)-g(W), 

h=y(m, y)-ytm/eA, y>, d2=yV(m.eB, Y)-yh y). 

Note that if y is sufficiently large, then (0.1) y log y< W-A and W+ B< 

“Yl% Y* 
We shall show that for sufficiently large y and for suitable fixed choices 

of b, u, we have 6i> 82. 
Note that 

(6) &=y(m, y)(l -e+), &=y(m, Y)(e+-- 1). 

If h;(W) denotes the right hand derivative at W, we have by (6) 

(7) .hSh;(W) = -$& (1 +o(j/F)) 

~b~(‘+‘(l/~))=~~(‘+o(l/~)). 

Also for large y, m . es z 2m, so that there is a power of 2 in the interval 
(m, m.es]. Thus &>O, so that (6) implies da>O. 

Assume di 2 1. Since (6), (7) imply Bs = y(m, y). o( l/log y), we would 
thus have by (6) that &> 82. Thus we may assume dr < 1. With this 
assumption we have 

Gl>y(m, y)(dr--id?), &gy(m, y)(dz-t-&di+o(df)). 

We thus have 

(8) &--&>y(m, y)(dl-~d~-d2-~d~+o(dil)) 
=y(m, y)((di-ds)-dz-ds(di--dz)--&(dr-da)a+O(dX)). 

Since W is a vertex point, we have AI/A > AZ/B, so that 

(9) 

The assumption Al < 1 implies AI- AZ< 1 -AZ, so that (7), (S), (9) give 

&-&sy(m, Y)Az. 

= ytm, YMZ - 

( 4loga log +O (A) - z&&+0 (1/Fg)(1+0(&))) 
=y(m, Y) $ ( 

4loga- a l +0(1/F)). 
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We now choose a =el’*b( 1 + c/2), so that for all sufficiently large y we 
have & > d2. 

Singe eAfB =?j, the inequality &> 6% implies by Lemma 1 that 

f(m) > m * eB = myy/a. 

Now m =ew, so that 

(10) bylogy<logm<(1+E)bylogy. 

Thus for large y, log y <loglog m, so that 

1 -. 
‘> b(l +E) 

log m 
loglog m’ 

Hence 

fb> ’ 
m 

1/ 
log m 

al/b l&G ’ loglog m 

m 

= elf*b (1 + 42) r/b l/zE 
log m 

loglog m 

, (1-e) m logm 
el/*b r/b loglog m ’ 

Thus choosing b =$, we have (2). 
For each x, let y be such that lug z= $ y log y. We have seen that 

for all sufficiently large x there is an integer m for which both (2) and 
(10) hold. But (10) implies z<rn<zxl’“. 0 

f 3. UPPER ROUNDS FOR f(n) 

THEOREM 3. For nn2, f(n)~(2+o(l))nfl?. 

PROOF. Let ES 0 be arbitrary, but fixed. For i E (n/j/log n, n], let 
u+=d([l/log n]+ 1). Then the CQ are distinct and at E (n, n(fli-t- l)]. Let 

I=[l, 72/1/1og] n Z, J=(~(llfo’;grt+i), (2+4n$ii] n 24. 

Let U be the bipartite graph from 1 to J where (i, j) E I x J is an edge 
if and only if j/i is prime. 

If k E I, then the valence of & is 

~((2 -ke)nld@% /i) -n(n(~l&T + 1)/i) 

& 
( > 

n)f@-ii 
> ’ + Ti i log (nl&&) 

> l+E-- 
( > 

log n 
2 loglog n 

for all sufficiently large n by the prime number theorem. If j E J, then 
the valence of j is at most w(j), the number of distinct prime factors of j. 
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But again from the prime number theorem, we have for all large n 

w(j) < (1+ 42) log n/loglog ?&. 

Thus by the KSnig-Hall theorem, it follows that G contains a matching 
of I into J. Hence for all large n, f(n) < (2 +e)nt&. q 

We can improve the theorem slightly. Let r be the solution of the 
equation e-‘=p and let c=l/r/(l--r)= 1.7398 . . . . Then 

(11) f(n)<(c+0(1))nlf~. 
We now sketch a proof of (11). Let y E (0, 1) and let k be a natural number. 
Let 

4 = wwG% Y ~-ln/$j$j n Z for j= -k+l, -k+2, ‘.., k, 
I-~=(yb~~~i@G,n] n z, Ik+l=p, pn/l/logn] n Z. 

Thus the 1, are disjoint and U,“_“, 1~ = [1, n;] f~ Z. Now let b be a positive 
number and let 

Jl=(n, y*~@ii+l)] n 2, J~=(y~n(~&%+l), (++b)nfii]. 

If i E f-k, let &c=i([+@%]+ 1) E Jl. Let 

I= U,“-‘L,+, If=([l, n] n z)-I+. 

Let G be the bipartite graph on I, JZ with (i, j) E Ix Ja an edge if and 
only if j/i is prime. We shall show that for a suitable choice of y, k, b, 
G contains a matching of I into Ja. It will thus follow that f(n)< 
i (y”c -I- b)npg$. 

Say G does not contain a matching of I into Ja. Then by the Kiinig-Hall 
theorem there is a set UC1 with s=)Ul>@an Uj=y. Let V=span U 
and let q=(U n 111 for j= -k+ 1, . . . . k. 

If U E Ij, -k+l<jgk+l, the valence of zc is at least 

(byj+l + o( 1))log n/loglog rt. 

If v E J2, the number of u E If which are connected to v by an edge is 
at most the lesser of 

(b+yk+o(l))(+-++l)logn/loglogn and (1-t.o(l))logn/loglogn. 

Now the number of edges incident to U n If is at least the number of 
edges incident to V with an endpoint in Ij. Thus for -k+ 1 <j< k, 

(b~‘+l$o(l))~<(b+y~fo(l))(y-‘-y-’+l)y. 

Hence for -k+ l<j<k and using ycz, 

02) bqgIb+yn+o(l))(y-l--)s. 

The number of edges incident to V is at least as big as the number of 
edges incident to U. But the number of edges incident to V is at most, 
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(I + o( 1)) y log rt/loglog n. Thus 

(by ~+l+o(l))q+(bY-k+o(l))(z- 

= j & (by-J+l-by” fo(l))q + (by-k+o(1))2 

> ,, f,, (~+yk+0(1))(~l-l)(y-~+l-y-*)2 + (by-kfO(l))Z 

using the negative of (12). Thus dividing by z and multiplying by ykfl, 
we have 

rk*l(1+0(1))2(~+Yk)(1-Y) ,-$,I (yk-‘+l-- 1) + by 

= - (b f yqp+1- y - 2ky + 2k) + by. 

Let #l= b+ yk. Then, by letting n -+ 00, we have 

2yk+l>,!l( -y2k+l+(Bk+2)y-2k). 

We thus conclude that if y, k, b are chosen so that -yak+1 + (2k+ 2)~ 
-2k>O and 

(13) /? > 2yk+l/( - y=+l + (2k + 2)~ - 2k) 

then for all sufficiently large n, f(n) ~#?q/logn. 

Let r be the solution of the equation a-*=~ and let y = 1 -r/!i?k. Then 
the right side of (13) is 

2(142k)k’l 
- (1 - r/2k)‘=+l+ (2k + 2)( 1 - r/2k) - 2k 

2e-‘j2 + o( l/k) 
= -e-+2--r+o(l/k) 

Thus letting k +oo, we have (11). 

$ 4. EXTREME VALUES OF f(n, m) 

THEOREM 4. For all positive integers m, 7t, we have 

fh ~)~4NY~l-i- 1). 

PROOF. Lot m, n be arbitrary positive integera, let II= [l, n] n Z, 
Jr = (m, m + 4n[@]] n Z. Using the intervals (m + (k - l)n, mf kn] for 
k=l, 2, . . . . 4[vn], we have a partition of Jr into 4[@] consecutive intervals 
of length n. If j E Jr, let (j} denote the interval to which j belongs. Let 
Q1 be the bipartite graph from II to Jr where (i, j) is an edge if and 
only if ;lj. 
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Say the valence of every j E Ji is at most [In]. Since the valence of 
every i E Ii is at least a[@], it follows from the Kiinig-Hall theorem 
that Gr contains a matching of 11 into J1. Thus we would have our result. 
Thus assume some ji E J1 has valence larger than [vn]. Say span (ji)= 
=KiCIi where lKil>[l/n]+l. Send each i~Ri toji+i=ap. Then ila;t 
and these cxd are all distinct. Moreover these al lie in <ji> u <ji + m}. If 
Ri =Ji, we are all done. So assume .I(i#Ii. Let 12 =Ii-Ri, JZ = J1 
- ((ji-n} u (ji) u {jr+ n)), Let Ga be the subgraph of Qi determined 
by 12, J2. 

Say the valence of every j E JZ is at most [I/n]. Since the valence of 
every i E 12 is at least 4[vn] - 3> [In], it follows from the Kijnig-Hall 
theorem that Gs contains a matching of 12 into J2. Thus we would have 
our result. So assume some ja E J2 has valence larger than [In]. Say 
span {ja) =& C I2 where lRa\ > [l/n] + 1. Send each i E RZ to js +i=a+ 
Then i&, the a$ are distinct, and the ar all lie in (ja) u (js+n). These 
two intervals are disjoint from (jr> u (jl+n>. If .&=ls, we are done. 
So assume Kz+Iz. Let &=12-K& Js=Jz--((jz-n) U (j2) U {jz+n>). 
Note that we might have (js+n> =(ji-n> or (js-n)=(jl+n). Let Ga 
be the subgraph of Ga determined by 13, J3. 

Say we continue this procedure until we reach the bipartite graph 
&+I from It+1 to Jt+l. We have that 

(14) IIt cn-Wnl+ 1) 

and that Jt+l consists of at least 4[‘n]-3t disjoint intervals of length n. 
From (14) we may assume t Q [l/n], so that Jt+l consists of at least [l/n] 
disjoint intervals of length n. Thus every i E .Tt+i has valence at least [j/n]. 

We thus conclude that our procedure must terminate at some t and 
when it does, one of two events must occur. Either It =O or Gt contains 
a matching from 1’t to Jt. In either case, we are done. 0 

We can lower the constant “4” in Theorem 4 somewhat, but we do not 
know how to prove f(n, m) =o(n3/2). We conjecture that f(n, m) <ni+o(r). 

8 6. THE AVERAGE v&m cm f(n,m) 

THEOREM 5. Let LY = 1 - log(e log 2)/lag 2 = .08607 . . . . Then for all 
sufficiently large n, 

L(n)-1 2 f (n, m) > *(log n)a. 
m-1 

PROOF. From Tenenbaum [12] we have that the density d, of the 
integers which have a divisor between [n/2] and n is o((log n)-a). In the 
interval (m, m+ f(n, m)] there are at least nn/2 distinct integers with a 

divisor between [n/2] and n. Let S(n, x) denote the number of jgx which 
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have a divisor d with [n/2] <d Q n. Then 

Lb) 

m21 (fJ( n, m + 2n(log np) - X(n, m)) < Bn(log 12)” l S(n, L(n)) 

= 2n(log n)%&(n) 

< 2n(log n)* . *(log n)-a . L(n) = &L(n) 

for all sufficiently large n. Therefore, the number 2 of m, 1 <m<&(n), 
such that S(n, m + 2n(log n)&) - S(n, m) >n/2 satisfies (n/2) .Z< (n/4)1;(n). 
That is, for all large n, ZgL(n)/2, Thus for at least L(m)/2 choices of m, 
1 grn< L(n), we have f(n, m) > 2n(log n)*. Thus 

t(n) 
mzl f(n, m) > &L(n) a 2n(log n)a = I;(n) . n(Iog n)“, 

for all large n. iJ 

THEOREM 6. Let p=log(55/2/2. 39= 1.6825 . . . . Then 

L(n) 

L(n)-1 2 f (n, m) c n - exp ((B + o( 1))log n/loglog n). 
m-l 

PROOF. Let E> 0 be arbitrary and let c = 3/2+4&. Let 

b=log (l$C)-tC log(l+c-I), 

so that as E --f 0, we have b + /?. 
For any integer m let d%(m) denote the number of divisors d of ti with 

d<n and let on(m) denote the number of prime divisors p of m with 
ps;n. Let T, denote the number of m E [l, L(n)] with 

d,(m) > exp (b log n/loglog n) Ef e(n). 

We now show 

W T,, < L(n)/dEs”. 

First we note that for any m, if con(m) =a, then d,(m) Q y(n, ~~8) where 
ps denotes the s-th prime. Indeed, if qi, 92, . . . , q8 are the prime factors 
of m not exceeding n, then every divisor d of m with cE< n is composed 
of just the q’s. We thus observe that an upper bound for d,(m) is the 
number of integers not exceeding n composed of just pi, 132, . . ., p.,; that is, 
ylh 24. 

Now if p8< (3/2+ 3s)log n, it follows from de Bruijn [l], that for all 
large n, ~(n, ps) <e(n). Thus, for large n, an(m) ze(n) implies 

pi > (3/2 -t 3e)log n 

where s= w,(m). This in turn implies that 

c&m) > (3/2 + 2a)log n/loglog n dEf T%. 
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Thus T, is at most the number of m&n) with on(m) >m. Hence, for 
large n, 

T, ~L(n)(,g~ l/p)‘“/m ! 6 L(n) . (2 loglog n)rn/(%/e)rn 

= L(n) . exp (rll. logloglog n + m( 1 + log 2) - r, log r%) 

d(n).exp (-(3/2+4 log n), 

which givea (15). 

Suppose now m is such that in the interval J= (m, m+nae(n)] n Z 
there is no integer j with d,(j) > e(n). Then f(n, m) Q n-e(n). Indeed, if we 
consider the bipartite graph from I= [l, n] n Z to J where i E I is con- 
nected to j E J if ilj, then the minimum valence of an i E 1 is at least 
e(n), while the maximum valence of a j E J is less than e(n). Thus the 
K&g-Hall theorem applies. 

Now the number of mgL(n) for which there is an integer j E (m, m + 
rise(n)] with &(j)>e(n) is at most 

T,.n.e(n)<L(n)‘n-~~2-*.e(n) 

by (15) for large n. For these m we have f(n, m) < ~9’2 by Theorem 4. 
We have seen that for the remaining m we have f(a, m) <nne(n). Thus 

LW 

mgl f(n, m) g&2+ + L(n) . 12-1j24. e(n) + n - e(92) * L(n) 

= 2L(n) . n q e(n) 

-=c L(n) . n m exp ((b - 6)log n/loglog n) 

for all large 7t. Thus letting E + 0, we have already seen that b + /l, and 
so our theorem follows. 0 

Improvements on the size of /3 in Theorem 6 are attainable. The limit 
of the method gives ,9=log 4. However, we believe much more is true. 
We conjecture that 

Lb%) 
UG-1 L: fh m) < dog W 

m-1 

for some y> 0. 

5 6. OTEfEB PROBLEMS 

If 1 <k <n, let g(n, k) denote the smallest number so that for each 
choice of integers 1 ~a1 -C . . . < uk: in, there are distinct integers bl, , . ., bk 
in (n, g(n, k)] with arlbt for i= 1, . . . . k. Also let h(n, k) denote the least 
number so that in any interval of length h(n, k) we can find a set of 
distinct multiples for each k-element subset of (1, . . . . n). Thus g(n, k) 
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(I@, k)+n. In our previous notation we have f(n) =g(n, n), 

max f(n, m) =A(n, 12). 
m 

By a. similar argument aa the one which gives Theorem 2 from Lemma 2, 
we have 

so that 

(16) liminfg(n, k)/n;>f(W. 

Mimicking the proof of Theorem 4, we have 

(17) hh 4 < Wk 

uniformly for all k, n (with Ic< n). Thus 

(18) n-+m lim sup g(n, k)/n < vi& 

We do not know how to narrow the gap between (16) and (18), but we 
feel (16) is closer to the truth. 

Now we look at particular subsets of {l, . , ., n} that are of interest. Let 
t(n) denote the smallest number so that in (n, /g(n)] we can find distinct 

, ‘a-, b,(,) where ~1bt for each i @ denotes the i-th prime). It is not 
too hard to show that for each n> 1, f@(n) = 2rp,cn) except that fg(4) = 8 
and fg( 10) = 16. More interesting is the function fg(ti, m) , the lesst number 
so that in (m, m+fg(n, m)] there are distinct numbers bi, . . ., b,(,) such 
that p]bt for each i. The question is, what is the average value of f&n, m), 
that is, what is 

where M(N) is the product of the primes not exceeding n ? By Theorem 6, 
we have g&n)<nl+*{l). Perhaps it is possible to show that gg(n)/n is 
bounded above by a power of log n. We cannot show (nor are we sure 
we believe) that gg(n)/n is unbounded. 

Now let 

h&n) = m8x f@(n, m). 
(II 

We know very little about h@(n). ErdG and Selfridge can show, using 
Brun’s method, that 

(19) lim sup h&)/n> 3. 
n-+m 

Using (17) in the case k=z(%), we have 

(20) k44ln << Wag n. 
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We do not know how to narrow the immense gulf between (19) and (20). 
Related to these questions, we ask if there is a large constant c so that 

in any interval of length cn there are n(n)-n(n/2) distinct multiples of 
the primes in (n/2, n] (there need not be a matching). If yes, what is the 
smallest value of c 1 The same question can be asked if pl< . . . ($33 is 
any set of primes, but now “c%” should be replaced by “cpk”. Erdijs and 
Selfridge have shown that for every k there is a aet of primes PI< . . . <pk:2 
with only 2k: multiples in some interval of length (3 -0(1))p~a. This is 
how (19) is established. 

Is it true that for a large enough c, every interval of length cn contains 
a number divisible by precisely one prime in (42, n] ? What if we replace 
the primes in (n/2, n] with the primes in [l, n] ‘1 

Let /e(n) denote the least number so that in (n, /o(n)] we can find 
distinct numbers bl, . . . , bt where @lb6 for each i and (al, . . . . at> is the set 
of numbers not exceeding n divisible by no prime exceeding log n. 
Theorems 1 and 3 immediately give inequalities for f*(n). However, 
Theorem 2 does not seem to carry over for f&n), although Lemma 2 does. 
Is it true that /e(n) = f(n) f or all sufficiently large n, or for almost all n ? 

Let fyd(n) denote the least number so that in (n, /G(n)] we can find 
distinct numbers bd for each d/n such that djbd. We at first thought that 
/C&V,) could be as large as fs(n) by considering highly composite choices 
for n. But a very simple proof shows f&n)=2n for every choice of n. 
Indeed, let bd =n+ d. 

Given a particular set of integers O<al -C . . . <ax, what is the length 
of the shortest interval which contains distinct numbers bl, . . ., bw with 
&lb* for each i ? Say, for example, p, q, r are distinct odd primes and 
al =pq, ae=pr, %=qr. Let &, &, ds be the minimal integers with 

dip = elq -t fir, dzq = e2p + f 2r, &r = e3p + f3q 

such that the et, ft are positive integers. Then it is easy to show that 
the shortest interval which contains distinct numbers bl, bz, b3 with a+lbt 
for each i has length .I= min {t&p, c&q, c&r}. If p <q < r, 

g(r-p)a=Q(r-q)pf~(q-p)r, 

so that d2 < Q(r -p). Thus lg $(r -$)q which is half the length of @q, qr]. 
Does equality hold inilnitely often ? 

In the introduction we remarked that we cannot show maxm f(n, m) 
> f(n, n). Nevertheless, we believe this to be the case for all It> 5. In 
fact we conjecture 

max f(n, m) - f(m, n) -+ c0. 
m 

All we can prove is that there are ititely many n with 

(21) max f(n, 4 -f(n, 12) > 1. 
m 
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In fact (21) holds if n is a sufficiently large prime p. In this case f@, p - 1) 
-f@,~)=l. T o see this, suppose not, so that there exist 

al, . . ..apErP.p+f@,p)-11 

distinct with i[a+ Thus f(p - 1, p - 1) < f(p, 21). But this inequality is untrue 
for all large p. What is true is that f (p - 1, p - 1) = 1 f f(p, p), since given 
the mapping of (1, . . ..p-l] into {p, . . ..p-l-t-f(p--l.p-1)) we note 
that JI need not be used as an image. Thus we can map (1, . , ., p} into 

b-u, .“, p,-1+fW-~,z+1)} by sending r, to Zyp. Note that 2~ need 
not be used as an image for 1 or 2 - we may use p’ for 1 and 2~’ for 2 

where I>’ >p is prime. Probably it is possible to show the left side of (21) 
is unbounded, but we are not sure of the details. 

Another problem that is perhaps of some interest is to estimate 6(n, c), 
the asymptotic density of the set of n with f(n, m) < cn. It is clear the 
density exists since f(n, m) is periodic in m. Moreover if c> 1, then 
d(n, c)> 0. Even the case c = 1 provides some interesting considerations. 
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