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On the number of prime factors of integers 

P. ERD6S and A. SARKiiZY 

1. Throughout this paper, we use the following notations: 

Cl, c2, -*. denote positive absolute constants. The number of elements of 
a finite set S is denoted by /SI. We write p”lja if ~“ln but not p”“jn; 

d(n) denotes the number of positive divisors of n: d(n)=21 ; 
din 

v(n) denotes the number of prime factors of y1 counted with multiplicities: 
v(n)= 2 a; 

P”ll?l 

x(n) denotes the number of distinct prime factors of n: x(n) = 2 1; 
Pin 

7+(x) denotes the number of integers y1 satisfying nsx and v(n)=i; 
Q~(.x) denotes the number of integers n satisfying ~15~ and x(n)=i; 
P(n) and p(n) denote the greatest and least prime factor of II, respectively. 

2. In [2], the authors asserted that for any 0=-O, there exists a constant 
c,=c,(o) such that for all sufficiently large x and 1 sisw log log x, we have 

x (log log x)i-1 
Xi(X) -= q(u)-- 

logx (i-l)! 
for 1 5 i 5 ologlogx. 

(There was also a missprint: 15 isw log x was printed instead of 15 is o log log x.) 

We attributed this theorem to Hardy and Ramanujan (referring to [4]), and we used 
it (with w=lOO) to prove that for all E=-O and large k, 

(2) 

and 

2 
k 

O~i~rloglogk ni(k) -= (log k)d’) --E 

(3) 2 
(l+z)loglog k-ci 

(see (25) and (33) in [2]) where 

(41 p(x) = lfxlogx-x 
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and z denotes the single real root of the equation q(x) =q (1 +x); a simple 
computation shows that 

(5) cl,54 -5 z -= 0,55. 

The first author used (1) also in [l], in order to prove that for all E=-0 and 
x=-x&), we have 

log log x 
(6) 2 

log log x i- 
dx) -= oogxx)l-~ Wg2) log2 

log 2 

(see (3) in [l]). 
However, (1) is f&e in the form stated above (as K. K. Norton pointed out it 

in B letter written to the authors). In fact, Hardy and Ramanujan proved (1) with 
e&x) in place of rcni (x) : 

(7) 
x 

@iCx) ( c2(w)- 
(log log xy-l 

logx (i-l)! 
for 15 i 5 ologlogx. 

Furthermore, they proved in [4] that for all 6 ~0, (1) holds with o =F -6 : 

x 
q(x) -= 3 - 

(log log x>i-1 
6 logx (i-l)! for 1 z% i 5 ( T- 6 1 log log x. 

SATHE [6] extended this result by proving that for all 69, we have 

(8) 
x 

a> -= %(ij) - 
(log log xy -l 

logx (i-l)! 
for x 2 3, 1 s i 5 (2-6)loglogx. 

SELBERG [7] gave a different proof of Sathe’s result and showed that for all 6~0, 
we have 

(9) %(X> - Gi (xlogx)2-’ for (2f6)loglogx~ i S c,loglogx. 

This result shows that (1) does not hold for iz(2+6) log log x (while we used (1) 
with w = 100 in order to prove (3)) ; in fact, the right hand side of (8) is greater 
than the right hand side of (1). (See also [3] and [5].) 

The aim of this paper is to correct the papers [l] and [2] by deducing an upper 
estimate for ni(x) which is slightly weaker than the best possible but which holds 
for all i: 

Theorem I. For all 6=-O, we have 

(10) ni(xl < 

L 

&) x (l%logx)‘-l 
logx (i-l)! 

for 15 i 5 (2-S)lOglOgX 

xlogx 
c,P- 

2’ 
for 1 ZZ i 

andfor all xz3. 
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Sections 3 and 4 will be devoted to the proof of this theorem. In Section 5, we 
prove two corollaries of Theorem 1. In Section 6, we show that in fact, (2), (3) and 
(6) can be deduced easily from these corollaries. 

3. In order to prove Theorem 1, we need two lemmas. 

Lemma 1. For all non-negative real numbers Z and A, let G(Z, A) denote 

the number of positive integers n satisfying nSZ and x(n)zA. Then there exists 
an absolute constant cl0 such that for all Z and A, we have 

(11) G(Z, A) s c,,,~-~Z log (Z+2). 

Proof. If x(n)&A then we have 

thus 

d [n) = 17 d(p”) S- 17 2 = # 2 = 2%(“) SE 2A 
711n P’2illi n 

W) 2 d(n) 2 nz d(n) 2 nzz 2A = 2AG(z, A). 
tl?iZ 

X(fl)ZA x(n)zd 

On the other hand, it is well-known that for Z-- + m, 

2 d(n) - ZlogZ 
IlSZ 

thus for all Z(zO), we have 

(13) 2 d(n) 5 qiZlog(Zf2). 
PZSZ 

(12) and (13) yield (11). 

Lemma 2. For a posifive real number y and a non-negative integer u, write 

Then there exists an absolute constant cl2 such that for y?2 and all CC, we have 

(14) F(y, a) I c,,(a+1)2-“(log~)~. 

Proof. Let us write 

[where m=~(y)). Then obviously, all the coefficients ai are non-negative and 
we have F(y, ~$=a,. Thus 

(15) f(2) = ig ai2’ zz a,2” = 2”F(y, CX). 
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On the other hand, by the definition of f(t) and using the Mertens-formula, we 
obtain that 

(15) and (16) yield (14). 

4. Completion of the proof of Theorem 1. If lz&(2-S)loglogx then the 
tist inequality in (10) holds by the Sathe-Selberg formula (8). Thus it is sufficient 
to prove that 

(17) 
xlogx q(x) -== c,i4----r- 

2’ 
for all x z 3 and 1 5 i. 

Let us fix a real number ~23 and a positive integer i. Let S denote the set 
of the positive integers n satisfying y1 z x and v(n) = i (so that r+(~) = IS 1). 
Furthermore, let S, denote the set of the positive integers n fur which nsx 
and there exists a positive integer t such that t=-2’ and t2/n. Write S, = S- S,. 
Then we have 

s, = 0. 

and 

(1% s1n 

(18) implies that 

(20) 7rj(X) = IS 

Obviously, we have 

+-= 
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In order to estimate IS,], let us write all nES in the form y~=ylrn~ where 

(22) P(n,) s 2’, $?(a,) =- 2’. 

If there exists a prime number p such that p p-2’ and $1~. then by the definition 

of s,, we have nE S, thus by (19), nQ S,. In other words, for all nE S,, n, is 
squarefree thus 

(23) x(nJ = v(n2) = v(n)-v(nJ = i-v(n,). 

If r?~ S, and we put v (nl) =u then by (23), 

(24) 0 5 u = i-x(n,) 5 i. 

By (22), (23) and (24) we have 

In order to estimate the inner sum, we use Lemma 1 with 2=x/n, and A = i- c1 
We obtain that 

IS21 5 ,i 2 C102-i+a 
a=0 nlsx 

:1og :+2 -= 
( 1 

P(l4S2’ 
v(n,)=a 

< Cl0 2 2 2-9-a x 
a=0 n,sx 

--glog(x+2) < 
P(n3z+I2~ 
v(q)=a 

where F(y, ac) is defined in Lemma 2. By using Lemma 2, we obtain that 

(25) IS21 < Cl5 ai& 2- ‘+“xlogx.c,,(a+1)2-“(log2~~ -= 

-cr: c,,i22-‘xlogx 2 (a+l) r c,,i*2-‘xlogx. 
pY=o 

(20), (21) and (25) yield that 

pi ~ IS,l+lS2l < 2-'X4C,,i42-'X10gX i 

-= c,,i*2-‘x log x 

which proves (17) and this completes the proof of Theorem 1. 
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5. It can be deduced easily from Theorem 1 that 

Corollary 1. If 

CW 8=-Q and l-y-=2---6 

fhen we have 

(27) 

fop y S j/loglogx s 2-6, x =r xo(y, 6); 

furtlzermore, we have 

i$7r,(x)-=c2,j4~ forallj and xz3. 

Proof. First we prove (28). By Theorem I, we have 

Obviously, for ip&, we have 
(i+ I)” 2 i4 

-p-- y-y 

thus for jsi,, 

hence 

(30) 

for all j. (29) and (30) yield (28). 

Now we prove (27). The function q(x)= 1 +x log x---x is increasing for 
x=-l, thus writing 

r = 1(g = Pm-d2--6) 
2log2 ’ 

we have Oeq. Thus Theorem 1 and (28) yield (with respect to (26)) that for 



On the number of prime factors of integers 243 

x (log logx)‘-1 

-= c22@> - 
1Ogx (j-l)! jsis[(Z-q)loglogx] j(j+l)... (i- 1) + 

z (log log x)‘-’ 

x 
-e c22w - 

(log log x)‘-l log log x i-i 

-4 I+ 1OgX (j-l)! jsj j 

(log log x)4 
+ c23x ~~ogx)~2-2q~~0g2+q~og2-1 ( 

x 
-= c22m - 

(log log x)j-l +- X 

logx (j-l)! tz y-‘+ (log X)(2-2?/)log2-l+d2 = 

= c,,(d)Y- 
x (loglogx)j-l+ x 

y-l logx (j-l)! (logx)4’2-d’+“/2 
< 

1 x (log log x)j-1 
-= c,,(6)---- 

y-l logx (j-l)! 

By the Stirling-formula, we have 

1 k 
(32) - 

(log log x)k--l _ 1 e% log 4” - 
logx (k-l)! logx loglogx k! 

1 - k (e10g;gx)Xk-‘,2= 

- c24 log x log log x 

= c24 lo;;rg x (log x> 
-lf(l--log(k/logIog x))k/loglogx = 

= cz4 lo:;rg x (log x)-‘+‘(kllOglOgx) for x 2 3 and k + + 00. 
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Thus with respect to (26), for ySj/log log ~~2-6, x=-xl(y, 6, q)=xl(y,6,q(6))= 
=x2(y, 6) we have 

(33) 
1 x (loglogx)j-1 > 

c23 (4 - - y-l logx (j-l)! 

=- &(y, S)x(log log x)-1’2(log x)--s~~log’ogx) > 

=- c2&, ~)x(loglogx)-1’2(logx)-“(2-~) >x(logx)-‘(2-J)--“~2. 

(31) and (33) yield (27) and this completes the proof of Corollary 1. 

Corollary 2. If y=-1 and E=-0 then for yloglogxsj, XBXJE) we have 

(34) 

1 

x 
if ley-=2 

iz 7Li(X) -= flogx)w’:-’ 

(log #-e)YloP 2-l 
if 25~~ 

Proof. If l+(logx)-“‘2 -=y~2-~12 then (27) (with ~12 in place of S) and 
(32) yield that 

1 1 
2 71i tx) ( c19 (c/2) - x - 

(log log x)j-1 

isj y-l logx (j-l)! -= 

c= C26(&) (log X)&/2X Ih;bz, x (log X) -~ci/logmx) < x(log X)-m+~ 

for x>xl{&), while if liySl+(logx)-“12 then (34) holds trivially for x>x2(&) 
since we have 

and, for all j, 

l&lfp(t) = q(l) = 0 

iz ni(X) s x- 

If 2-&/2-=y then by (28), we have 

xlogx x 
s 2u-e/4)Yloglogx = (~ogx)(1-&/4)Ylog2-l 
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for x=-q(s). If 2~y then this yields (34). Finally, if 2-~/2<y~2 then we obtain 
from (35) that 

-= (log x)cd~ --Emr = 

X 

(log x)“(Y) -E 

which completes the proof of (34). 

6. In this section, we correct the proofs of (2), (3) and (6). In the proof of (2), 
we used (1) only for isz log log k. Thus we need (1) with 0=2<0,55< 10/9 but 
in this case, (1) holds by the classical Hardy-Ramanujan result. 

Now we are going to prove (3). Let 6 =a(.$ denote a small positive number 
such that we have 

cp(l +z+ > q(l+z)-e/2 = 40(2)--E/2 

(note that cp(l +z)=q(z) by the definition of 2). By using Corollary 2 with 
1 +z-6, ~/2, k2 and [(l -t-z-S) log log k2] + 1 in place of y, E, x and j, respectively, 
we obtain that 

2 7ci(k2) -c .z pi ~ 

(1 + z) log log kc i [(1+z--b)loglogk~]+l~i 

k2 k2 ka 
< (log ,3P(1+2 -6) --E/2 -= (log k)dz) --E/2-&/2 = (log k)& -$ 

for k=-k,(c) which proves (3). 
Finally, note that the right hand side of (6) can be rewritten in the form 

X 
log log x 

(elog2) I*g2 = 
x 

{log x)1-e (log ~)1--E-~1+1021022~/1022 = (log ,,:l,lo2 2)-e 

so that (6) can be obtained from Corollary 2 with l/log 2 (~2) in place of y. 
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