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We report on some work which occurred to us more than a decade ago .

We seriously started to work on these problems at the international

meeting on combinatorics in Calgary in 1969 [9] . In the last few weeks

we formulated several new problems . We clearly had no time as yet to

look at them carefully so it may turn out that some of the conjectures

are false or some of our problems will be easy to solve .

We will use the notations of our paper [7] : "Some remarks on

Ramsey's and Turin's theorem," Coll . Math. Soc . JanosBolyai,Combinatorial

Theory and Its Applications .

	

Balatonfüred, Hungary, 1969, 395-404 . To

avoid the necessity of the reader having to consult [7], we will always

explain a new notation the first time we use it .

In a forthcoming paper [8], we give detailed proofs of some of the

results stated here .

1 . Let f(n;k,, . . .,kr) be the largest integer for which there is a

graph G(n ;e) of n vertices and a=f(n;k,,	kr) edges where the

largest independent set of G(n ;e) is less than kr (i .e ., any set of kr

vertices of G(n ;e) contains an edge) and the edges of our G(n ;e) can

be coloured by r - 1 colors so that the ith color does not contain a

K(k i ) (a complete graph of k
i

vertices) .

The reader will probably recognize the connections with the classical

theorems of Ramsey and Turin (for details see [7] .

Trivially, f(n ;3,t) <
Zt.

In [7] we prove that if k l=2r+l,k 2=o(n)

then

(1) f(n;2r+l,o(n))=2(1 - -)n2(1+o(1)) .
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Bollobás, Szemerédi, Erdös [2], [10] proved
2

(2)

	

f(n;4,o(n)) = 8 (1+0(l))

We could not get an asymptotic formula for f(n ;2r,o(n)) if r > 2 . We can

easily show

(3) I n2 < f(n;6,o(n)) < (lam + o(1))n
2

In [8], we prove

(4)

	

f(n ;3,3,o(n)) _
2

n4 (1+0(1)

and we conjecture

(5)

	

f(n;3,3,3,o(n)) _ (5 + o(1))n2

Denote by m3(r) the largest integer for which one can color

K(m3 (r)) by r colors so that none of the colors contains a mono-

chromatic triangle . m3 (2) = 5, m 3 (3) = 16 are well-known, but Folkman

proved m3(4) < 64 . (A trivial induction gives m 3 (r+l) < (r+l)m3(r)+1

and Folkman's result shows that equality does not hold here .) The exact

determination or even good estimation of m 3(r) seems very difficult .

It is not even known if m 3 (r) I/r ; m is true .

We conjecture that

(6)

	

f(n ;3,3	3,o(n)) = 2(1 - m fi r) ) n2+o(n2) •
r+l times

	

3

We prove (6) for r=2, (we obtain (5) for r=3) . If (6) is true,

then an easy argument gives that if we color the edges of K(m(r)+1)

by r+1 colors so that at most r colors are incident to every vertex

then one of the colors must contain a triangle . This is easy to prove

for r=2 and r=3, but so far we have had no success with r=4 .

With Hajnal we also tried the following problem : Let M3 (r) be

the largest integer for which one can color the edges of a K(M3(r)), so

that there is no monochromatic triangle and every vertex is incident to

at most r colors . Again a trivial induction shows

(7) M3 (r+l) <_ (r+l)M3(r)+1

Is there equality in (7) or alternatively is M3(r) = m3(r)?
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Now we generalize f (n ;kl, . . .,kr) for more general graphs than

complete graphs . Let G l , . . .,Gr be a set of r graphs . f(n;G,, . . .,Gr)

is the largest integer for which one can color the edges of Kn by r

colors so that the ith color contains no GI and the union of the first

r-1 colors has f(n;G,, . . .,Gr) edges . In our theorems and problems Gr

will be complete (it will play the role of the

In (8j, we prove that for every r

(8) f(n;K(l,r,r),o(n)) = o(n2)

and 2
(9) f(n ;K(3,3,3) .o(n)) =

n4
(1+0(1))

We can not decide whether for the case between these two :

(10) f(n;K(2,3,3),o(n)) = o(n2)

is true . It will perhaps help the reader if we restate the conjecture

(10) in "human" language . Let G(n) be a graph having n vertices and

more than cn 2 edges which does not contain a complete tripartite graph

on two red, three blue, and three white vertices . Is it then true that

our graph must contain an independent set of at least E

c
n vertices when

E c is an absolute constant which depends only on c?

We proved that if the vertex set of G can be decomposed into two

classes neither of which spans a circuit in G then

2
(11) f(n;G,o(n)) < n4 (1-EG)

where EG depends only on G . If the set of vertices of G can be

decomposed into three classes so that the first two span no circuit and

the third is empty then f(n;G,o(n)) = R (1+0(1)) .

What are the possible values of

(12) lim f(n ;G,o(n))/n2 ?

n i

We feel that an answer to (12) may be fundamental in clearing up

many related questions . The value of f(n ;G,o(n)) certainly depends on

19
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the chromatic number of G . It also depends on the value of the smallest

integer t for which one can decompose the vertex set of G into t

classes so that none of the classes spans a circuit . What else does it

depend on?

Determine h(c) where

(13) f(n;3,3,cn) _ (h(c)+o(1))n2 .

At first we thought that (13) would be easy, but we soon observed using

the coloring of the edges of K(16) by three colors none of which contain

a triangle that probably

f(n;3,3,8) _ (6 + o(1))n2

and now we are uncertain whether it will be easy to determine h(c) .

Before we discuss hypergraphs, we state three more problems . Let

r be a fixed integer and n ->

	

Assume that G(n) contains no K(4) and

no K(r,r,r) . Is it true that if the largest independent set of G

is o(n) then the number of its edges is o(n 2)? In view of (2) and (9)

this seems a fascinating and perhaps difficult question. Szemerédi

felt that the answer is negative, but will not be easy to obtain .

We stated in the beginning the trivial formula

(14) f(n;3,t) < to/2 .

For which values of t = t o can we have equality in (14)? B . Andrásfai

and P. Erdős (1) have some results here . In particular, let to be the

smallest t o for which there is equality in (14) . Is it true that

1 +ct* > n2
n

for a certain absolute constant c?

Perhaps it will be fruitful to study the set
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of integers
S(n;kl, . . . . k r) for which if e e S(n;kl, . . .,kr) then there is a
G(n;e) for which the largest independent set is less than ki,
and the edges of our G(n;e) can be colored by r-1 colors so

that the ith color does not contain a K(k i) . Our "old" f(n;kl, . . .,kr)
is the largest element of S(n ;kl, . . .,kr) . A recent theorem of Ajtai,



Komlós, and Szemerédi can be fitted into the study of S(n;kl, . . .kr) .

(It is, of course, not at all certain that this will help .) Their sur-

prising theorem states : Let G(n;kn) be a graph of n vertices and

kn edges which contains no triangle . Then our graph contains an

independent set of size greater than
cn lkg k

Observe that if we

do not assume that G has no triangle then it is easy to see that the

largest independent set has size cn/k and that this is best possible .

The "bonus" of the condition no triangle is thus the factor log k .

The authors incidentally show that apart from the value of c this is

best possible . Their paper which has also surprising applications in

number theory will soon appear .

Assume now that our G(n ;kn) contains no K4 (or Kr) . Can we

state that the largest independent set has size
k m

(K) where

(k) i W as K m ? At the moment nothing is known .

2 . Now we

We restrict ourselves to

problem of Turán

that every three

and f(n;K(3)(4)) triples

of a set of 4 elements) .

lim f(n;K (3)M/ _
n -

give a short discussion of the problems on hypergraphs .

uniform three-graphs . A famous and well-known

f(n,K(3)(4)) the smallest integer sostates : Denote by

uniform hypergraph (i .e ., triple system) on n elements

contains a K(3) (4) (i .e., all the 4 triples

It is known and easy to see that

(3,

a > 0

exists, but the value of a is not known . We are going to prove in [8]

that

	

l
(15)

	

f(n;K (3) (4),o(n)) _ (a+o(1))(3i

In other words, there is a three-uniform hy
/
pergraph on n vertices and

(a+o(1))(3) hyperedges which contains no K (3) (4) and the largest inde-

pendent set of which is o(n) . We prove the related result if K (3) (4)

is replaced by G(3) (4 ;3) (i.e ., the 3-uniform hypergraph of 4 vertices

and three triples .

These results seem to show that the extra condition : "the largest

independent set has size o(n)" has no effect here . This might be sur-

prising knowing what we proved in [7] for graphs :

2 1



size

in [8] that

and

M

lim
f(n;r,o(n)) = c < 1

n i W f (n ; r)

	

r

and that the conjectured
n
3

graph having the vertices x,y,z l,z2' z3 and the

and (zl ,z2' z3 ) . Clearly f(n ;G(5)/G(3)(5 ;4)) >

This

extremal hypergraph has an independent set of

Denote by G(3) (5;4) the hyper-

edges (x,y,zi),i=1,2,3

cn3 and we easily prove

is not entirely true .

f(n;G(3)(5y4),o(n)) = o(n3) .

Here are two problems which we can not do .

the hypergraph having the vertices x;)'l,y2,y3
;zl,z2'z3 and the 11

triples (x,yi,zj,),(yl,)r2,y3),(zl,z2'z3) . Is it true that

(16) f(n;G(3) (7;11),o(n)) = o(n3) ?

Perhaps

(17) f(n;G (3) (9 ;30),o(n)) = o(n3)

also holds . (16) and (17) seem difficult, but we had no time to study

them seriously .

3 . Finally we make some remarks on the Ramsey functions . Let

r(kl, . . .,kr) be the smallest integer t for which if we color the

edges of K(t) by r colors then for some

	

the ith color

contains a K(ki) . We conjecture

(18) lim(r(3,3,n))/(r(3,n)) > m

n -> m

(19) lim(r(3,n+1)) - r(3,n)) +

n + m .

It is very surprising that (18) and (19) which seem trivial at first sight

should cause serious difficulties . We further expect that

lim r(3,3,n)/n2 ->

n ->

and perhaps r(3,3,n) > n3
E

for every E > 0 if n > n0 (E) .
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Let G(3) (7;11) be



It is known that
g(20) ~2 < r(3,n) < cn	2

log
	 nogn

(log n)

The lower bound in (20) was proved by P . Erdös [4] and the upper bound

by Graver and Yackel [5] . For these results see also [6] . Ajtai, Komlós,

and Szemerédi in their forthcoming paper replace the upper bound of (20) by

Mat . Lapok 23(1973), 113-116 .
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a 2cn

An asymptotic

log n

formula for r(3,n) is nowhere in sight at the moment .
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