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Hajós conjectured that every s-chromatic graph contains a subdivision of K., the complete
graph on s vertices. Catlin disproved this conjecture . We prove that almost all graphs are counter-
examles in a very strong sense.

Let G=G(n) be a graph of n vertices. Let X=X(G) denote its chromatic
number and a=o(G) the largest integer I so that G contains a subdivision of K,
i.e . a(G)=1 is the largest integer such that G contains a subgraph homeomorphic

with complete graph of l vertices . Let us put H(G)= X(G) and H(n)=max H(G(n))
o (G)

	

G(n)

Hajós [10] conjectured that H(n)=1 and Catlin, [2] recently disproved
the conjecture .

We shall prove that there are arbitrarily large graphs G with H(G)--

(2 log n -1)3i2 . The proof is a simple consequence of Turán's Theorem and

the lower bounds for Ramsey numbers R(n, n) established in [6] by the probabilistic
method. By a slightly more complicated method we shall prove that there is an
absolute constant C such that

(1) H(n) > C lCn
g

and in fact our proof yields that (1) holds for almost all graphs G(n), i .e . (1) holds

true for all but o(2(2)) labelled graphs of n vertices . By a slight modification of the
proof of Theorem 2 one can obtain a simpler proof of an easier fact, namely that
the Hajós conjecture fails for almost all graphs.

It is difficult to guess whether probabilistic methods can be applied to dis-
prove the Conjecture of Hadwiger . In fact - perhaps this conjecture is true after
all . Various relationships between the Hajós conjecture, the Four colour Theorem
and the Hadwiger Conjecture are discussed in [11] .
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Catlin pointed out to the second author that graphs described in [8] in a much
more complicated manner are isomorphic to some of his counterexamples to the
Hajós Conjecture .

Let a and of denote respectively the independence and the clique number .

Theorem L H(G)
I I
n .
T a)

Lemma . If G contains no q-element complete subgraphs KQ , then a (G)<y2(q-1)n .

Proof. Since G contains a subgraph homeomorphic to K_ there is a a-element set
SS G such that every two vertices of G are joined by mutually internally disjoint

paths. Since G contains no Kq , by Turán's Theorem S has at most	 q-2 a2
2(q-1)

edges, and thus it has at least P=a(a-l) - q-2 a2 missing edges . Since the2

	

2(q-1)
endpoints of a missing edge are joined by a path of length at least two, G has at
least P+a vertices (if all internal vertices of a connecting path are in S one needs
even more additional paths). Thus

n z a(a-1) - q-2
	 a2+a

2

	

2(q-1)

1
2(q-1)	 a2 ~ n

which proves the Lemma . I

Theorem 1 now follows from the Lemma since X~n/a .

Theorem 2 . There are arbitrarily large graphs G such that

H(G) z

	

}fin/2
(2 log n -1)3/ 2

Proof. By Erdős' Theorem, ([6], p. 292) for every k>3 there are graphs G with
more than 2k/2 vertices, containing no Kk nor any k-element independent sets .
Hence, both the clique and the independence number of G are smaller than 2 log n-1 .
Thus, Theorem 2 follows from Theorem 1 .

Theorem 3 . There is a constant C such that for almost all graphs G,

H(G) > C1in
g

(2)

	

X(G) Cl lo
n
nn

E

Proof. It is known, [5] that for almost all graphs G on n vertices we have
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Thus to prove the theorem it is enough to show that for almost all graphs
G(n), we have
(3)

	

Q(G) < C2 Y.
From the Central Limit Theorem (or an elementary combinatorial computa-

tion) it follows that the number of graphs of t vertices which have more than

3 ( 2) edges is less than 2(2) - e -". Hence the number of graphs on n vertices which

have a subgraph of t C2 log n vertices which has more than 3 ( 2) edges is less than

2) e-°'' < 2(n. We-11 ' = o(2
( 2)~ .

Thus, almost all graphs on n vertices have the property that for every

t > Cs log n, every subgraph of t vertices misses at least 3 ( 2) edges. Hence, by

the same argument as in the Lemma we have that all but o(2( 2)) graphs have
a (G) < C2 r, which together with (2) proves the theorem .

The proof of Theorem 3 could be easily improved to show that for almost
all graphs G(n) we have

u(G(n)) < (2+o(l))n1/2 .
We also conjecture that

H(n) < C
nt/2
log n '

i .e . that our theorem is best possible apart from the value of the constant .
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