
For a graph G with n vertices and average valency t, Turán's theorem yields the inequality
a?nl(t+1) where a denotes the maximum size of an independent set in G . We improve this bound
for graphs containing no large cliques .

0. Notation

n=n(G)=number of vertices of the graph G
e=e(G)=number of edges of G
h=h(G)=number of triangles in G
deg (P)=valency (degree) of the vertex P
deg, (P) = triangle-valency of P=number of triangles in G adjacent to P

t=t(G)=n f deg (P) = 2eln = average valency in G (we will tacitly assume t' 1)

T= T(G) =maximum valency in G
a=a(G)=maximum size of independent set of vertices

(independence or stability number)
Kp =shorthana'- for p-clique
log x=max {1, In x}
to , cl , c2, . . . are absolute constants
when speaking of union, difference or partition of graphs, we work with the vertex-sets

1. Introduction

Let G be a graph of n vertices and a edges with average valency t=2eln .
It is an easy consequence of the celebrated Turán's theorem [6] (and can easily be
proved directly) that G contains an independent set of size nl(t+1), i .e .
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This estimation is best possible, as shown by the Turán graph : nl(t+ 1)
cliques of size t+ 1 . This extreme graph is very stable, graphs which are not that
crowded locally have a much higher independence number . This idea of Szemerédi
has been formulated by Ajtai, Komlós and Szemerédi in [2] and [3] as follows :

Theorem 1 . If G is trianglefree then (1) can be improved to

(2)

	

a

	

0.01 (n/t) log t

(2) is best possible up to constant multiple.

Denote by f(n, t, p) the largest integer such that every graph of n vertices
and average valency t that contains no Kp satisfies

a f(n, t, p) .
Theorem 1 states that
(2`)

	

f(n, t, 3)

	

c (n/t) log t.

It is possible that for every fixed p we have

(3)

	

f(n, t, p)

	

cp (nlt) log t.

Perhaps (3) is too optimistic, but we feel that it is an interesting and chal-
lenging question . Here we make a modest but perhaps not quite insignificant con-
tribution by proving that for any fixed p, f(n, t, p) tends to infinity with n and t
faster than n/t, i .e . the exclusion of Kp improves Turán's bound (1) significantly .

More precisely, we prove the following estimation .

Theorem 2 . There is an absolute constant c l such that

(4) f(n, t, p) cl (n/t) log A,
where A= (log t)lp .

Thus the exclusion of Kp improves on Turán's bound as long as p=o (log t) .
Theorem 2 gives no new information for p>log t . There are two obvious gaps
here in our knowledge . The first one is that p=o(log t) can perhaps be replaced
by p=o(t6) . The second gap is that we cannot decide whether (3) is true or not
even in the case p=4.

The same questions can be asked for hypergraphs. Consider an r-graph
with n vertices and e edges. Set t=t, to be the (r-1)-st of the average valency,
i .e . re=nt'-1 . The probabilistic method shows (Spencer [5]) that a>cn/t, i .e . G
contains cn/t independent vertices . Ajtai, Komlós, Pintz, Spencer and Szemerédi
[1, 4] improved this "Turán bound" by a factor (log t)11( r -1) by forbidding certain
small subgraphs (the assumption is that the hypergraph G contains no cycles of
length ~--4) . Both this latter result and Theorem 1 proved to be essential tools in
several applications.

Let us now assume that our r-graph G contains no KO(p) for some p>-r.
Does that improve the bound a>-cn/t? In particular, is it true that there is a func-
tion g(t)--- such that if G contains no K(3) (4) then a(G) ::-c(n/t)g(t)? This is
not even known if we exclude K (3)(4 ; 3) .

This is perhaps the third big gap in this fascinating subject .
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2. A sharper version of Theorem 1

A crucial point in the proof of Theorem 2 will be the application of the follow-
ing sharper form of Theorem 1 :

Theorem 1' . If the number h of triangles in G is less than snt 2, where e ::- 1/(log t),
then

a

	

c2 (nlt) log 1/s.

In other words, for any graph G

a

	

c 2 (n/t) min (log (ntllh) ; log t) .

Joel Spencer remarked that Theorem 1' is best possible up to constant factor .
His example starts from a trianglefree graph G' on n' points with average valency t',
10<t'<(n)113, and independence number

a' < c (n'l t') log t' .

(That such a graph exists is mentioned in [3] - take a random graph and delete
the few vertices in triangles.) Now fix a number s>exp t' and blow up each point
to an s-clique. Connecting the vertices of two s-cliques if and only if the original
two points were connected in G', we get a graph G with n=sn', t=st' . The number
of triangles in G is at most

S3 n'+ s'n't' < 2snt = (2/t') n t 2defEnt 2' s = 2/t' .

On the other hand,
a = a' < c(n'lt') log t' < 2c(n/t) log 1/s

and s > 1/log t' .

3 . Sparse Subgraph Lemma

Leknma. Let p=2, 0<b<1/2 be arbitrary. If a graph H contains no Kp then it
contains a (spanned) subgraph H' with

n(H') - (2S)p`n(H), e(H') < b(n2(H'))2 •

Indeed, for p=2 the lemma is trivial . Apply induction on p : If e(H)<
-<6(n2(H)) 2 , choose H' =H. If e (H) ~---bn 2 (H) then there is a point P with
deg (P) ::-2Sn(H) ; let H' be the neighbourhood of P. It contains no Kp _, and
n(H') :-2Sn(H), thus the induction applies .

The above lemma implies the following

Lemma*. If H contains no Kp then it can be partitioned to H=Ho U Hl U H2 . . . in
such a way that

n(Hi) = SP`n(H), e(Hi) < 6n 2 (H,), i = 1, 2, . . . .

and for the leftover Ho
n (H,) < Sn (H) .
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Indeed, apply the lemma with 6/2 to get H' with ,

n(H~ z b-0-2 n(H), e(H) < (6/2)n2(H') .

Take a subgraph Hl of H' with

n(Hj = 6P-I n(H), a(HI) < &n2(HI)

(there is such an Hl since, for any k, the average of e(H')'(n(2'~ over all sub-

graphs H' of H' with n(H)=k, is equal to e (H')I
l
n (H') ) 26) . Then repeat

this for H-Hl , etc., until we get Ho with

n (H,) < 6n (H) .

4. Proof of Theorem 2

The proof will use induction on n. We consider two cases according to the
maximal valency .

If Tit+ 10t/(log t), we pullout a vertex P with valency T and apply induc-
tion on on G-{P} . Since

t' = t(G- {P}) < (nt-2t-20t/(log t))/(n-1)

we have with A'=(log t')/p

a(G) - a(G-{P})

	

c, ((n-1)/t') log A' :::- c, (n1t) log A .

Thus we can assume
(6)

	

T - t+ IOt/(log t) .

We will partition the vertices of G to subsets VI , V2 , . . . of size T. Select the
point P with the largest triangle-valency deg3 (P). VI will consist of this point, its neigh-
bourhood, and arbitrarily chosen other vertices so that V I will have exactly T points .
Now in the remaining graph select the vertex with the largest triangle-degree (within
this remainin graph), and let V2 consist of this vertex, its neighbourhood, and some
other vertices so that IV21=T, etc. We get a partition Vl , V2i . . ., V,„, m-n/T.

Let us have a closer look to what happens after Vm/2 , when half the vertices
have already been partitioned. At the next step we select from the other half of
vertices the one with the largest triangle-degree H (within this half) . Set E=A-3c11c' .
There are two possibilities :

Case I. H<cT2
Case II . H-sT2

In Case I the number of triangles within the second half of vertices is less than
(n/2)ET 2, thus by Theorem I'

a c2(n/2T) log (1/E)
and we get (3) directly .
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So we only have to consider Case IL Then at every step up to the m/2-th
we pulled out a vertex with at least sT 2 triangles, i .e . each Vi , 1=ism/2, contained
at least aT2 edges. Thus there are at most (1-e)nT/2 edges between the classes
Vl, . . ., Vm .

Set b=e/10 and subdivide each class Vi to ViO , Vit , Vie , . . . according to
Lemma* and delete all vertices of Vio , i=1, 2, . . . .

Now I Vij I =6p - ' I Vi 1, thus by taking average, we see that there is a choice
function j i such that the number of edges between the subclasses Vij,, i=1, 2, . . . , is
at most b'p-2 (1-e)nT/2 . The number of edges within a class V i;, is at most
5 .52p-21V,12= 10 62p-2 T2, thus the number of edges in the graph G' whose vertex

set is U Yj ,, is less than (1-0.88)6 2p-2nT/2.
i
Since

n' = n(G') >- (1-b)6P-ln(G).
we have

t' = t(G') < (1-0.8e)6 2p-2 n (G)T/n(G')

< (1-0.7e)6P -I t(G)(1+10/logt(G)) < (1-0.6e)5P -I t.

Applying induction, we have (A'=(log t')lp) .

a (G) -- a(G')

	

ct (n'/t') log A'

	

c, (1 +e/2) (n/t) log f log t-(p-1) log (1/b)-0.6e1 ~I P
c l (n/t) logA for Cl -- C21 10 .
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