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It is shown in this paper that the pair (G, H) is Ramsey infinite when both G and H are
forests, with at least one of G or H having a non-star component . In addition, an infinite
subfamily of R(PP.) is constructed .

1. Introduction

Let F, G, and H be graphs (no loops or multiple edges) . We write F (G, H) if
whenever each edge of F is colored red or blue, then either the red subgraph of F,
denoted (F)R, contains a copy of G or the blue subgraph of F, denoted (F)B ,
contains a copy of H. The graph F is called (G, H)-minimal if F (G, H) and
F' (G, H) for each proper subgraph F' of F. In particular, if G, H, and F have
no isolated vertices, F' can be replaced by F-e, where e is any edge of F. The
class of all (G, H)-minimal graphs will be denoted by R(R, H) . The pair (G, H)
will be called Ramsey-finite or Ramsey-infinite depending upon whether R(G, H)
is finite or infinite .

This paper is essentially a continuation of [3], where !R(G, H) is considered for
H and G both star-forests, i .e ., forests of stars . There it is shown that if G and H
are star-forests with no single-edge stars, then (G, H) is Ramsey-finite if and only
if both G and H are single stars with an odd number of edges . The case when G
or H have some single-edge stars is not completely answered . Some particular
cases are considered with the general question of the finiteness of R(G, H), when
either G or H contain single-edge stars, left open .
There are other papers which discuss similar problems . In particular see

[2, 4, 5, 6, 9]. Nesetril and Rödl proved that (G, H) is Ramsey-infinite if both G
and H are 3-connected [10], or if both G and H are at least 3-chromatic [10], or
if G and H are forests, neither of which is a star-forest [9] . In light of [9] and [3]
0012-365X/82/0000-0000/$02.75 0 1982 North-Holland
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this leaves the case when one of G or H is a star-forest and the other is a forest
with at least one non-star component . The central result (Theorem 7) of the next
section settles this case . It is shown in [4] that (G, H) is Ramsey-finite when G is a
matching and H is any graph. In addition if (G, H) is Ramsey-finite for each
graph H, then the results of [5] indicate G must be matching .

We need to introduce some further notation and terminology. The word
"coloring" will always refer to coloring each edge of some graph red or blue . A
coloring of F with neither a red G or a blue H will be called (G, H)-good or, if
the meaning is clear, simply a good coloring . If G is a subgraph of (F)R this may
be denoted by G , (F)R . For the graph G, V(G) and E(G) will denote its vertex
and edge sets respectively . For typographical reasons the star K,,, will be

symbolized by Sn, . As in [6], a (G, H, y)-determiner will be a graph which has
(G, H)-good colorings, but only ones in which the edge y is red . One could call
such a graph a "red" determiner, but for compactness of notation we will not do
so, since a (H, G, y)-determiner is the same as a "blue" determiner . Naturally, the
reader must be careful to observe the distinction . Also for compactness, we will
drop the y or even the G and H when the meaning is clear. In a (G, H, y)-
determiner the edge y will be called the determined edge .

We will sometimes need stronger types of determiners . A well-behaved deter-
miner is one which has good colorings in which the determined edge is red, but all
adjacent edges are blue . A (G, H, y)-determiner is minimal if no proper subgraph
of it is a (G, H, y)-determiner. Observe that a minimal determiner contained in a
well-behaved one is also well-behaved .

In what follows, we will frequently construct graphs by identifying vertices or
edges of other graphs . The reader is to understand that in such cases, all vertices
and edges remain distinct, except for those explicitly made the same by the
identifications specified .

Further notation and terminology will follow that of [l] and [8] .

2. Main results

The reader should observe that in several of the theorems to follow, we use the
following simple condition which is equivalent to that of the pair (G, H) being
Ramsey-infinite: for each positive integer n o there exists a graph in R(G, H) with
at least no vertices . The following lemma is an example of the methods used to
establish such a condition .

Lemma L Let T and U be trees with at least three vertices . If there exists a
well-behaved minimal (T, U, a)-determiner where a is a free edge, then there exists
a well-behaved minimal (U, T, (3)-determiner where (3 is a free edge, which has
more vertices .
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Proof . Let H be a well-behaved minimal (T, U, a)-determiner with a a free edge .
(Recall that a free edge is one with a vertex of degree one .) Let H' be formed
from H by removing the vertex of degree 1 from a, and denote the other vertex
of a by v. Also, let x and y denote two distinct end vertices of T. Let x' and y' be
the neighbors of x and y respectively ; x' and y' need not be distinct . Now take a
copy T* of T ; for each vertex of T* , except x, x', and y', take a copy of H' and
identify its v with that vertex of T* . Call the resulting graph L and let a be the
edge xx' . We will show that this graph is a well-behaved (U, T, (3)-determiner,
and moreover that any (U, T, (3)-determiner contained in L has more points than
H.

To see this, observe that in any (U, T)-good coloring of L, all edges of T*
which are incident to points corresponding to v in a copy of H' must be blue,
since each H' must be (U, T)-good colored . That is, all edges of T * , other than 0,
must be blue; hence (3 must be red . Furthermore, it is clear that good colorings of
this type exist, so that L is a determiner. In addition, we see from these colorings
that L is well-behaved . Now delete edges from L until it becomes a minimal
determiner, and consider the edges of T * ; none of these could have been
removed, for then (3 could be colored blue in some (U, T)-good coloring .
Similarly, no edge of the copy of H' attached at y could have been removed, for
then the edge yy' could be colored red and 0 colored blue in some good coloring .
Since any subgraph of L containing all of this copy of H' and all of T * has more
vertices than H, the proof is complete .

Theorem 2. Let Tn be a tree on n vertices which is not a star . Then (Sk , Tn) is
Ramsey -infinite if and only if k > 2 .

Proof . Since R(S,, G)={G} for any graph G, we need only to show that (S k , Tn )
is Ramsey-infinite when k -- 2 . Our first step (the biggest one) is to show the
existence of a (S k, Tn , a)-determiner when k % 2. This determiner will not in
general be well-behaved .

Consider a K,-, and label a fixed vertex v. If k > 2, then attach to this Kn_, at
v a S k_ Z , by identifying the central vertex of the star with the vertex v, so that the
star is otherwise disjoint from Kn_, . At each of the remaining n-2 vertices of
K_ 1 attach a Sk , by its central vertex . This constructed graph, which we
call J(v ), has (n - 2) k + k -1 vertices, n - 2 of them of degree n + k - 3, one of
them (namely v) of degree n + k -4, and the remaining (n - 2)(k -1) + (k - 2) of
degree 1 .

If L is a graph with some vertices of degree 1, define O(L) to be that graph
obtained from L by attaching to each of its vertices of degree 1 a different copy of
J(v), identifying v with the vertex of degree 1 . Note that if L has t vertices of
degree 1, then I V(O(L))I = I V(L)I + t(I V(J(v))I -1) .

Define H, = J(v) and let Hi+ , = O(Hi ) for i =1, 2, . . . , n -1 . Set H'= Hn and
let vo denote the vertex v of H' which is also in H, . Take an edge a ={x, y} which
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is vertex-disjoint from H' and form the graph H* by attaching a to H' at v,,,

identifying y with v o .
We show H* is a (Sk, Tn , a)-determiner. To see this we first give a good

coloring to H* with a colored red . For such a coloring, color each copy of J(v)
contained in H* as follows : color all the edges of the K,-, in J(v) blue and all

edges of all stars attached to the K n_, in J(v) red. This colors all edges of H* but

a, which we also color red . Clearly this gives a good coloring of H * . To see that

under all (S,t, T.)-good colorings of H* edge a must be red, suppose the contrary,

giving H* a good coloring with a blue . Observe that all vertices of H* (except for

x) that are at distance n -1 or less from v o are of degree n + k - 3 . Hence these

vertices are of degree n-2 or more in (H*)B . Delete an end-vertex u from Tn

with {w, u} an edge of Tn and let T' represent this tree on n - I vertices . Clearly

since all vertices of (H*)B , different from x, within a distance n -1 or less from vo

are at least of degree n - 2, T'-- (H* )B - a with T' rooted with root w at vo . But

edge a is blue, giving Tn , (H* )B , a contradiction . Hence H* is a (Sk , Tn, a)-

determiner, which we denote as H*(a) .

We now use this (Sk, Tn, a)-determiner to construct a well-behaved minimal

(T71 , Sk, (3)-determiner. Take k-I copies of H*(a), and identify the end vertices

of the k - I edges corresponding to a ; designate this vertex by z. Now attach a

free edge P at z. Clearly, R is red in any (Tn, S,)-good coloring of this graph . In

addition, it has a (Tn , Sk)-good coloring in which (3 is red and all edges adjacent to

it (the copies of a) are blue . Hence it is a well-behaved (Tn, S k, 0)-determiner .

Remove edges to form a minimal one, which is clearly also well-behaved .

Now we invoke Lemma 1 enough times to form an arbitrarily large well-
behaved minimal (Sk , T., ,y)-determiner . Take our well-behaved minimal

(Tn, S k , (3)-determiner (or any other such), and identify (3 with y, keeping the

original end vertices of 0 and y distinct ; call the resulting graph F. This is our

desired large (S k, T.)-minimal graph, since clearly F-> (Sk, Tn ), and if an edge of

the (Sk , Tn, y)-determiner is removed, there will be a good coloring in which
y(=(3) is blue. This completes the proof .

Notice that each edge of F is part of a T, ; otherwise color this edge (call it 8)

blue and give F-8 an (Sk, L)-good coloring, which results in a (Sk, L)-good

coloring of R Hence since F has large diameter it has "many" disjoint copies of

Tn . This gives the following corollary to the theorem .

Corollary 3 . Let Tn be a tree on n vertices which is not a star. Then for each fixed l

and for k > 2 the pair (Sk U IS,, Tn ) is Ramsey-infinite .

We will prove two useful general theorems whose proofs are similar . One of

these results is used in the main theorem (Theorem 7) of this section . First,

however, we prove a lemma .
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Lemma 4. Let {G } 1 _ i_ . and {Hi}l,i=_, be families of connected graphs . Let

F0 E R(G, H;) for each i and j. Then there exists a subcollection Cfi of the family

{Fii}1<i<m,1_j, such that
(1) for each i and j there exists an L E 19 such that L - (G, H;), and
(2) there exists a fixed s and t such that F,, E (S and L- (G,, H,) when L E

Proof . We will actually prove this result for any subset of the set of pairs
{(G1, H;)} . The proof will be by induction on the number of such pairs in the
subset .

Clearly the result holds when there is one ordered pair . Thus assume there are
k + 1 ordered pairs of graphs (G, Hi ) and that the result holds when there are k .

Take any k of these k + 1 pairs. By assumption there exists a subcollection W ' of
these k ordered pairs such that both (1) and (2) hold. Consider the remaining pair
(Gj ,, H;-) and its arrowing graph F,- ;- . If there exists an L E 6 ' such that L -

(G j-, H;), then set 16= V . Otherwise take w = lg' U {F,-, } . Clearly W as defined
satisfies the conditions of the lemma and the proof is complete .

Before stating the next theorem we introduce some additional terminology . Let
{G }l, _m and {H;} 1_,_,á be families of connected graphs . Let !R(Ai1 G, A 1 Hi)
denote those graphs which when colored either contain red copies of G for each
i, 1-_ i <_ n, or blue copies of Hi for each j, 1 < j < n, but each proper subgraph can
be given a (Am 1 Gi , A; 1 H;)-good coloring. Here a (Am G, Aj_ 1 H;)-good
coloring of a graph means that the graph can be colored so there exist a fixed i
and j such that the graph contains no red G and no blue H i . Also, we give
the term "Ramsey-infinite" the obvious meaning in this case .

Theorem 5. Let {G;}1_t_m and {H;}l,,_,1 be families of connected graphs. If
(Gi , H;) is Ramsey-infinite for each i and j, then (Am, Gi , Aj- 1 H;) is Ramsey-
infinite.

Proof . Let no be a fixed positive integer . Since R(Gi, Hi ) is infinite for all i and j,
pick Fii E R(G, H;) such that I V(Fj)l > n o for all i and j. By Lemma 4 there exists
a subcollection cb of {F,,}1,,,_, such that (1) for each i and j there exists an
L E W such that L --> (Gi , H;) and (2) there exists a fixed s and t such that F,, E C§

and L- (Gs, Ht ) when L EW-{FJ. Thus we have that U cfi - (/gym 1 G, A;=, H;)
and if M is a subgraph of U W such that M E R(Am 1, G , A 1 H,), then M
contains F0 as a subgraph. But I V(F,,)I > no so that I V(M)I > no . Hence
(Am 1Gi, Aj_ 1 H;) is Ramsey-infinite .

Theorem 6. Let JGi }1_ i __ and {H;}, j , be families of connected graphs. If
(G, H;) is Ramsey-infinite for each i and j, then (Um1 Gl , U ; 1 H;) is Ramsey-
infinite.
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Proof. As in the previous proof, let n o be a fixed positive integer . Pick Fj; E
R(G, H;) such that I V(Fj;)j > no for all i and j. Choose cfi as in Lemma 4 and let
F=UW. Set v=m+n-1 ; clearly vF~(U ;_,,Gj,U ;= I H;) . Also since
F- jFj-# (G, Hr ), it follows that a subgraph M of vF such that M(-=
R(Um, G, U ; , H;) must contain F,, as a subgraph. Hence I V(M)I > no and the
result follows .

We now prove our main result .

Theorem 7. Let G and H be forests such that neither forest is a matching and at
least one of the forests has a component which is not a star . Then the pair (G, H) is
Ramsey-infinite .

Proof. The case when both G and H have components which are not stars has
been proved by Nesetfil and Rödl in [9] . Thus we may assume that

and

H=S,,,USn,z U . . . US„= U T,UT2 U . . . UTZ7

where ml > m2 =

	

>

	

> 2, n, > n 2%

	

n, :-:- 1, z > 1, and each T is a
non-star tree .

Let no be a fixed positive integer. Choose M c R(Uw, 5,,,,, U ;_, T,) such that
(setting G = S, and H; = T; for all i and j) M is one of the graphs constructed in
the proof of Theorem 6 . Recall that M is a subgraph of vF, where v = z + w -1

and F=UW. But 16 is a subcollection of {Fjjj,_j_H,,,_j, where Fi,ER(S„,,T;) .
Further it can be assumed that each Fi; is one of the graphs constructed in
Theorem 2 and that I V(Fi;) I > n o with Fj; (S m, U qSi , T;) for all i and j . The
assumption that Fi; -> (5,,,. U qS,, T;) follows as in Corollary 3 . Thus, since F,, _- M
for some s and t, not only is M e R(U UT;) but also M c

R(G, U ;-, T;) .
It is clear that (s + w + q -1)S_,+n,_, U M -- (G, H) . Furthermore, for each

proper subgraph M' of M, the graph (s + w + q -1)1)S,+,_1 U M' can be (G, H)-
good colored . Just color all edges of (s + w + q -1) S_, +,,,_, blue and give M' a
(G, U;-, T;)-good coloring . Hence, since I V(M)l > no , if M* is a subgraph of

(s + w +q -1)Sn,+,n,-i U M such that M* e R(G, H) we have that I V(M*) l > no .
This establishes the desired result .

We next prove a general result which will be useful elsewhere in showing that
(G, H) is Ramsey-infinite for certain graphs G and H. The proof of this result is

similar to those of Lemma 1 and Theorem 2, so we will be somewhat brief .

Theorem 8. Let G be a graph with connectivity at least two and T a tree with at

G=S m,US11 U . . . US_w UgS,
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least three vertices . If there exists a (G, T, a)-determiner, where a is a free edge, then
(G, T) is Ramsey-infinite.

Proof. We begin by constructing a (T, G, t3)-determiner . Let H be a minimal

(G, T, a)-determiner with a a free edge. Let H' be formed from H by removing

the end vertex of a, denoting the other vertex of a by v . Take a copy of G, calling

one of its edges 0 . For every vertex of G not on 0, take a copy of H' and identify
its vertex corresponding to v with that vertex of G. Call the resulting graph J. It is
easy to see that this is a well-behaved (T, G, t3)-determiner . It turns out that any
minimal (T, G, (3)-determiner contained in J is larger than H, but we do not use

this fact. Instead, we must show the existence of a (G, T, y) -determiner that is

larger than H.
Now take a copy of T with distinct free edges y and 8 ; let x be the end vertex

on 8. We will use this T as the basis for a (G, T, y)-determiner. For every edge of
this T, other than y, take a copy of J and identify its determined edge with that
edge of T. Call the resulting graph E It is easily seen that this is a (G, T, y)-
determiner . Consider now the vertex x and let xy be an edge other than 8 . This

edge is an edge of a copy of G on which a J was based ; therefore, in this J, y has

an H' rooted at it .
Consider the effect of removing any edge of this H' . It would then be possible

to give the copy of J in question a good coloring in which xy is blue, but all other
edges of the G it is based on (including 8) are red . One could then give all the
other J their usual good colorings, and could then color y blue, since 8 was red .
We conclude that any minimal (G, T, y)-determiner F, contained in F must leave

a copy of H', and of course the T on which it is based, intact . Hence we have that
F, has more vertices than H.

We now iterate this process enough times to form an arbitrarily large minimal
(G, T, y) -determiner F' . Also take any well-behaved (T, G, t3)-determiner F" and

identify 0 and y ; call the resulting graph F* . Clearly F* - (G, T) . Furthermore,
it is easy to see that if e is any edge in F', F* -e-# (G, T) . This yields the theorem
immediately .

Lemma 9 . Let Tn be a tree on n vertices, n > 2, and let m be a positive integer,
m > 2. Then the only (K_, Tn)-good coloring of has (K(_-,)(n-,))B
(m -1)K n_i .

Proof . The proof is by induction on m ; the result is clear for m = 2 and each fixed
n. Thus assume the result holds for all positive integer values less than a fixed m
and for all values of n .

Give L = K (m ,) (,_ ) a (K_, T.)-good coloring. Let T' be a vertex-maximal
subtree of Tn such that T'=(L)B . Since

	

is good-colored, I V(T')I
n -1 . Select a vertex v of T' such that if a free edge e = {x, y} is attached to T' at

v, the resulting tree is still a subtree of T n. Thus each edge of L incident to v but
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not in T' is red . This means, since L has been good-colored, that this coloring
includes a (K.-,, T.)-good coloring on each (m -2)(n -1)-element subgraph of
(V(L) - V(T')) . Let A be such a subgraph . By the induction assumption (A)B =
(m-2)Kn 1 . Thus each edge of L, not in A U T' but incident to a vertex of A,
must be red. But then I T'J = n -1 and (V(L) - V(A)) = Kn_ 1 , (L)B , so that the
result follows .

Lemma 10 . Let Tn be a tree on n vertices n % 2 and let m be a positive integer,
m , 3 . Then there exists a (K,n, Tn, y,)-determiner with determined edge y l a free
edge.

Proof. Take a K( ,n l)(n_,) and attach a free edge yl to it. By Lemma 9 the
resulting graph is clearly a (K_, Tn , y l )-determiner .

Corollary 11 . Let Tn be a tree on n vertices, n % 3, and let m be a positive integer,
m , 3 . Then (K„„ T,) is Ramsey -infinite .

Proof. By Lemma 10 there exists a (K,,,,, Tn , y l )-determiner with determined edge
yl a free edge. Thus the result follows from Theorem 8 .

3. An infinite snbcollection of R(P,, Pn)

As was pointed out in the proof of Theorem 6, Nesetfil and Rödl [9] proved
that (F l, FZ) is Ramsey-infinite when each F, is a forest containing a non-star
component. Their method of proof, although straightforward and elegant, suffers
from being rather nonconstructive in nature . Although their method permits in
principle one to find arbitrarily many members of R(F,, F,) by an exhaustive
search, the amount of work grows without limit . In particular, no infinite class can
be actually exhibited by their method . For this reason, we will give a method for
exhibiting infinitely many members of R(P., Pn), where Pn is a path on n vertices .
For any fixed n, only a finite amount of work is needed to construct an entire
infinite subset of !R (P,, Pn ) . For small n, this could certainly be done explicitly, but
we will not do so . It would be desirable, of course, to carry this one step further
and directly construct such subsets for all n simultaneously .
To shorten the presentation two of the theorems will not be proved, although

enough information will be given that the interested reader will be able to supply
the proofs . It should be noted that the constructions given will not work for
R(P-, PO with m # n.

First we need to introduce a special family of graphs . Let k and n be positive
integers, k odd (k > 3) and n =4, and let C be a cycle on k[Zn] vertices numbered
consecutively . Take v0 V(C) and join v to every vertex of C not divisible by [zn] .
Call this graph H(k, n, v) . Note that H(k, n, v) could be referred to as a skip
wheel .



Ramsey-minimal graphs for forests

	

31

For convenience we introduce the symbol Pn (v) . This symbol will denote a path
on n vertices with end vertex v .

We state the following two theorems without proof .

Theorem 12. Let n and k be positive integers, n _- 5, k > 3, with k odd.
(1) For each coloring of H(k, n, v) either H(k, n, v) contains a monochromatic

copy of Pn or a monochromatic copy of P3(v) .
(2) There exists a coloring of H(k, n, v) such that it contains a monochromatic

copy of P3(v), but no monochromatic copy of P 4(v) and no monochromatic copy of

P.-
(3) For each edge e of H(k, n, v) there exists a coloring of H(k, n, v)-e such that

it contains no monochromatic Pn and no monochromatic P3(V)-

Theorem 13. Let n be a positive integer, n > 5 . There exists a graph G with
distinguished vertex v such that both of the following hold .

(1) For each coloring of G either G contains a monochromatic copy of Pn or a
monochromatic copy of Pn_ 2 (v) .

(2) There exists a coloring of G such that it contains no monochromatic copy of P n
and no monochromatic copy of P n _,(v) .

Although the proof of this theorem will not be given, we do describe the graphs
needed in its proof . For n even let G = Kn+ni2_2 and designate v as any vertex of
G. For n odd consider the graph Kn+(n _3),2 and delete n - 2 edges incident to a
fixed vertex . This graph is G with v any vertex of maximal degree . The proof of
Theorem 13 follows closely the ideas of the proof given in [7] to determine the
Ramsey number for paths .
We now state the desired theorem about R(Pn , Pn ) giving the construction of an

infinite subcollection in its proof .

Theorem 14. For each n-_5 the family R(P., Pn ) has an infinite subcollection of
constructible members.

Proof. Let G' be an edge-minimal subgraph of the graph G of Theorem 13 such
that part (1) of the theorem holds. This is the only step in the proof that is not
fully effective ; but clearly such a G' can be found for each choice of n, simply by a
finite search of subgraphs of G. Take two disjoint copies of G' and a copy of the
graph H(k, n, v) of Theorem 12 and attach the three graphs together by identify-
ing the labelled vertices v, leaving the graphs otherwise disjoint . Call this graph
L(k) .
We show that L(k) E R(Pn, Pn ) for each odd integer k, k % 3. To see this first

color L(k) . By Theorem 13(1), if neither copy of G' in L(k) contains a
monochromatic Pn , then each copy of G' contains a monochromatic P,-2(V)- Call
these paths P' and P". These two paths share only vertex v, being otherwise
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vertex-disjoint, so that P' U P" is a path with 2n - 5 vertices. Since n % 5 this
means that P' U P" contains a monochromatic Pn in L(k) or P and P" are each
monochromatic paths of opposite colors . By Theorem 12(1), either the copy of

H(k, n, v) in L(k) contains a monochromatic Pn or a monochromatic P3(v) . Thus
either a monochromatic Pn occurs in-one of the copies of G' or H(k, n, v), or the
paths P', P" and P3(v) collectively give a monochromatic Pn in L(k) . Hence we
have that L(k) --~- (Pn , Pn ) . Theorem 12(2), (3) and Theorem 13(2) together with
the choice of G' show that L(k)-e--14 (Pn, P.) . Thus we have that L(k) c R(P., Pn )

for each odd positive integer k, k = 3 . It is clear that {L(k)J,,,, is a distinct family
where ko is such that I V(H(ko , n, v))l > I V(G')I . This completes the proof of the
theorem .

There are obvious questions left unanswered, with the most striking one

involving the possible finiteness of R(G, H) when G or H have connectivity two

or less. A summary of what is known was given in the introduction . This general
problem is quite difficult ; in fact it is probably very difficult to determine in
general whether -R(G, H) is finite or infinite when both G of H are star-forests
with at least one of these forests having components which are single edge stars .
Another interesting problem concerns constructing infinite families of R(G, H) for

specific forests (or trees) G and H, as was done in this paper for G = H = P,
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