
COMBINATORIAL PROBLEMS IN GEOMETRY*

Paul Erdös

(received 7 September, 1982)

Actually this is my first lecture in New Zealand. Perhaps if I

live it won't be the last .

There is a running discussion between Dieudonné and Branko

Grünbaum . Dieudonné sort of says that geometry is dead and of course

Branko Grünbaum disagrees with him . I think I am on the side of Branko

Grünbaum and I hope that I will convince you that at least combinatorial

geometry is not dead . Now some sort of classical Euclidean geometry

perhaps is sort of semi-dead . I call a subject dead if no new theorems

and no new conjectures have been born . Now the last really good

theorem in classical Euclidean geometry states as follows - this is a

theorem of Morley - it says if you take a triangle (ABC) and you trisect

the angles like this :

and you construct the points of intersection (D,E, and F) then this

triangle inside is equilateral . Extremely striking and beautiful
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theorem . And I think probably Euclid would have liked this theorem

and accepted it . Actually I am not a hundred percent sure because

there is

	

trisection and maybe Euclid wouldn't have accepted that .

Sometimes I make the joke : maybe soon I will be able to ask him whether

he accepts this theorem or not . I won't talk of course about such

things .

Now there are some new things in geometric inequalities . One of

the first things which I was associated with is the Erdös-Mordell

inequality. I conjectured this in 32 - that is in 1932 not 1832 -

which says as follows (Mordell proved it two years later) : if you have

a triangle and you take a point 0 inside and you drop the perpendiculars

and you join it with opposite sides :

then this (OA) plus this (OB) plus this (OC) is greater or equal

to twice the sum of the perpendiculars . Equality occurs only if the

triangle is equilateral and the point is in the centre . But I won't

talk about geometric inequalities either .

Now let me start about combinatorial geometry ; what kind of

problems I have in mind? There was a very beautiful book by Hilbert

and Cohn-Vossen . It appeared in 1933, the title then was Ansch uLiche

Geometric, the English title is Geometry and the Imagination . Well

I was reading this in 1933 and suddenly the following conjecture

occurred to me . Suppose you have n points in the plane, not all on

a line . Then it occurred tome that there must be a line which goes
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through precisely two of the points . So I repeat here : n points in

the plane, not all on a line, then there is a line which goes through

exactly two of the points . Or in another way if you have n points

in the plane and every line which goes through two of them also goes

through a third then the points all lie on a straight line . I thought

first I would prove it immediately . I couldn't prove it and a few

weeks later a friend of mine in Hungary, Gallai, proved it ; and this

was the first proof as far as I know . Latter L .M. Kelly found that

the conjecture is not new . It was conjectured in 1893 by Sylvester .

It appeared in the Educational Times, which seems to have been

forgotten, and as far as I know Gallai's proof is the first . Now the

simplest proof for this theorem is due to L .M . Kelly and let me present

the proof now to you . It comes straight out of the book . I have to

explain this . One of my jokes is : God has a transfinite book which all

theorems and the best proofs are in and if he is well-intentioned to

us he shows us the book for a moment . And I say you don't even have

to believe in God but you should believe that the book exists . Now

this is the way L .M . Kelly's proof works . Suppose we have n points

in the plane and every line through two of them goes through a third

and the points are not all on a straight line . We will now come to

a contradiction . Take the smallest distance of a point from a line .

Maybe there are several but since the number of points is finite there

is a smallest distance . Here is the smallest distance (AF) :
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OK now. This line (L) contains at least three points (because every

line through two goes through three) so you can assume there are two

points here (B and C) . This point (B) may fall in here (i .e . may

coincide with P) . Now join this point (A) to this point (C) and

drop this perpendicular (from B to AC) . Clearly this distance (BQ)

is smaller than this distance (AP) . And we arrive at a contradiction .

And this is it . It is a very clever and simple proof and you look

rather foolish if you try to prove it and didn't think of that .

Now there are many problems which you can raise here . Just to

mention one of them, de Bruijn and I stated that if you have n points

then the number of lines which go through precisely two of them goes

to infinity . We stated this as a conjecture . This was proved by

Motzkin in 1951 in the Transactions and then Kelly and Moser proved that

there are 3n/7 lines which go through two ; and this is best possible

at least for seven because if you draw these lines :

A

- there are seven points here - and the only lines through two of them

are these three lines (BF, FD, DB,) . But anyway Motzkin conjectured

that for n greater than thirteen there are at least n/2 ordinary

lines (i .e . lines which go through exactly two of the points .) And for

even n he showed that this is best possible if true . Very recently

a Danish highschool teacher called Hansen proved this conjecture . I

haven't seen the proof yet, it is quite new and is really very
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complicated, it goes on for about 50 pages . Very complicated . But it

seems that it was checked by Fenchel carefully and it is correct .

Now even before Gallai proved his theorem I noticed that it has

the following nice consequence . Suppose you have n - this goes back

you know fifty years now (not five hundred only fifty) - this is the

theorem : if you have n points in the plane, not all on a line and

you join any two of the points then you get at least n distinct lines .

So you have n points in the plane, not all on a line, and you join

every two of them, then you get at least n distinct lines . This is

best possible if true because if you have n-1 points on a line and

one off you get n lines . This is the way the proof goes . At that

time Gallai's theorem didn't exist yet but we will use it now . We will

use induction . And also we can assume right away that no n-1 of the

points lie on a line because in that case you trivially get n lines .

So take the line which goes through exactly two of the points and omit

this point (one of the two) . Then you are left with n-1 points,

which don't lie all on a line, therefore they determine n-1 distinct

lines by induction . And this is the answer, because this (i.e . the

line containing exactly two points) is a new line - it has now only

one point so it can't coincide with the other n-1 lines . Now I

have here the following problem for which I offer $100 . Incidentally,

inflation has a little bit to do with the price but more importantly

if a problem is unsolved for a long time the price slowly rises . The

maximum amount of money I had to pay so far is $1000 for a problem in

number theory and I have a problem which is $3000 . 1 was asked once

what could happen if all your problems were suddenly solved? Well,

I certainly would be in a difficulty but then, what would happen to

the strongest bank if all the depositors would suddenly ask for their

money? It would collapse instantly and it is much more likely that this

happens than that all my problems will be solved . So I think I am

reasonably safe . So this is the problem . Suppose you have n points,

at most n-k on a line, and you join any two of the points . Then I
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conjecture that the number o£ distinct lines is greater than ckn ,

for an absolute constant c which doesn't depend on k and n . But

unfortunately I've never been able to prove it . Now for small k

Kelly and Moser have a stronger result but for k about

	

this

fails . The most interesting case would be - for which I would already

pay - if you have 2rn points, at most n on a line, and you join any

two of them then you get more than cn 2 distinct lines . This probably

has the whole difficulty, this conjecture . Maybe this isn't so

difficult but I don't think it is trivial . [15 August, 1982 . J . Beck

just proved my conjecture, his paper will appear in Combinatoria - he

decided to collect the money in Hungarian currency .]

Now about literature on this subject .I have a paper in Annali di

Matematica about 1974 and Willy Moser sends out every year from McGill

University about unsolved problems in combinatorial geometry . And

Branko Grünbaum has several papers on the subject . There's also a very

nice book by Hadwiger, Debrunner and Klee which was published in English

(originally it was written in German) . So there are plenty of ways

of finding literature on these problems .

Now this theorem that you get n distinct lines is a special

case of a theorem of de Bruijn and myself which is purely combinatorial

and which is a generalisation of Fisher's inequality . It states as

follows . Suppose you have a set S of n elements and you have a

family of subsets A k contained in S and you know that 2 < ~AkI < n. .

Now assume that the subsets have the property that every pair of

elements is contained in one and only one of the A k . Then the

number of Ak s is at least n . Now the A k s can be the lines and

elements are the points . So once more I repeat ; you have a family

of subsets A 1 , . . ,Am , of a set of size n , every pair of elements

of S is contained in exactly one of the A k s . Then n ? m . This

theorem of mine here is a special case, because here the points are

points in the plane and the Ak s are the lines joining two of them .

Clearly every pair will be contained in one and only one line . So
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this purely combinatorial theorem generalises it and it is a genuine

generalisation because Gallai's theorem no longer holds here . You

know to see that you just have to take the Fano plane . Take all the

six lines here :

and add this (the circle) as a seventh line . That is the simplest

finite geometry . There are seven elements and seven triples and every

pair is contained in one and only one triple . There are many other

finite geometries . So let us leave this subject now and talk about

something else .

Now this is a metrical problem . This is a joint paper with

Anning, an old Canadian mathematician . He was my second collaborator

who died . They had once a show in England about 20 years ago, "This

is Your Life", you know a radio show, a TV show, where they collected . . .

let us say there was a Resistance leader who helped many people to

escape during World War lland they brought together all the people

whom he saved . So I thought it would be a good joke if they could

bring together all my collaborators . But since there are more than

two hundred it would be a little difficult . And it would be especially

difficult since so many of them are gone now . So OK, this is the

problem which we investigate . Suppose you have an infinite set of

points in the plane . And suppose the distance between any two is an
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integer . Then this is only possible if the points all lie on a straight

line . I repeat the theorem : you have an infinite set of points in the

plane and suppose every distance between any two of them is an integer .

That is only possible if the points are on a straight line . The first

proof, a joint proof with Anning, was somewhat complicated but later

I found a much simpler proof at the prodding of Kaplansky . Let me

present this proof now. So suppose you have an infinite set of points

in the plane and all distances are integers . We show that the points

must lie on a line . Now if they don't lie on a line then you certainly

have a triangle, a non-degenerate triangle . And once you have a non-

degenerate triangle then you can have only a finite number of points

whose distances from these three points are integers . And in fact the

number of points is bounded depending on the triangle . You will see

in a moment the proof . Now suppose you take a point X .

Since XB and XC must be integers you have by the triangle inequality

XB-XCI ~ a, so therefore this difference can take on at most 2a+1

values (it can be from -a to +a) . That means that the point X

must lie on at most 2a+1 hyperbolas whose foci are these two points

(B,C) - if the difference XB-XC is a constant then X is on a

hyperbola . The same is true of XA-XC, so it also lies on 2b+1

hyperbolas . Now two such hyperbolas can meet in at most four points,

because the foci are different, are non-degenerate, therefore the

total number of choices for X is 4(2a+1)(2b+1), which is of course

42



finite and only depends on the triangle . I think this proof is also

from the book . It is probably the simplest imaginable proof . So once

more : we have proved if you have an infinite set of points in the plane

and all distances are integers then they must be on a straight line .

Now there are several problems which might be asked here . The simplest

problem which is unsolved is this : - it is quite easy to find n

points on a circle so that all the distances are integers - but can

you find n points in general position, no three on a line, no four

on a circle, all distances are integers? For example Harborth settled

this for n=5 but the general case - even for n=6 - isn't known . But

this is probably difficult because it really belongs to Diophantine

approximation . Now the other question is due to Ulam . Can you find

a dense set of points in the plane so that all distances are rational?

I am almost sure that the answer is no . But this goes back to 1945,

so quite a long time . So you have an infinite set of points in the

plane which is dense, can it be that all distances are rational?

Independently Besicovitch asked the following much weaker question .

You have a convex polygon . Can you find arbitrarily close to the

vertices - here the convex polygon is an n-gon - can you find arbitrarily

close points so that all the distances should be rational? I think

that is unsolved even for n=5 . But here again the real difficulty

will not be geometric, this is a problem probably in Diophantine

approximation or Diophantine equations and this thing one would perhaps

expect to be difficult .

Now let me talk about something completely different . These are

problems which we call Euclidean-Ramsey . We have three papers, six of

us, Graham, Rothschild, Spencer, Montgomery, Strauss and I . There are

several great Montgomerys in mathematics, one is Deane Montgomery, a

topologist, and the other is a Montgomery in Michigan . Our Montgomery

is comparatively unknown . Anyway it never happened that the six

authors were together at the same time yet . So anyway this is the type

of problems we considered . Suppose . . . let me go back a little bit .
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There is a theorem of van der Waerden (maybe I won't be able to tell

you anything else but doesn't matter, it is an interesting topic) . The

theorem of van der Waerden states as follows : if you divide the integers

into two classes then at least one of them contains arbitrarily long

arithmetic progressions . Here I had to pay $1000 to Szemerédi . Fifty

years ago Turán and I conjectured that this problem has really nothing

to do with dividing the integers into two classes . If you have a sub-

sequence of integers which has positive density then it already contains

an arbitrarily long arithmetic progression . And the proof is very

difficult . Szemerédi proved it in 1972 and I offered $1000 for it .

And very recently a proof by ergodic theory was obtained by Furstenberg .

It is an interesting and growing subject, the application of ergodic

theory to number theory . Furstenberg has a book on this subject which

recently appeared . Now here is my $3000 problem in this connection .

An old conjecture in number theory states that there are arbitrarily

long arithmetic progressions among the primes . And I think the only

way to approach it is this combinatorial conjecture : if you have an

infinite sequence o£ integers a l < a2 < . . . so that

	

á =

	

then

the sequence contains arbitrarily long arithmetic progressions . This

I conjectured more than forty years ago . And since Euler proved that

the sum of the reciprocals of the primes diverges, if my conjecture

is true it would immediately imply the theorem on primes . So this is

a general conjecture : if you have a sequence of integers the sum of

whose reciprocals diverges,for every k you can find ai l _ . 1 a
2K
,,

which form an arithmetic progression of k terms . Now I offer as I

said $3000 for it, and I said I don't think I will ever have to pay

this money and I should leave some money for it in case I leave . The

second "leave" means of course leave on the journey inhere you don't

need passports and visas . So this has really nothing to do with the

topic, it was just an introduction . Now Gallai proved the following

generalisation of van der Waerden's theorem . Suppose you have the

lattice points in r dimensional space . You give any fixed figure,

any finite figure of lattice points, and you divide the lattice points
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into two classes . Then at least one of the classes contains a figure
similar to our figure . This clearly generalises the theorem on

arithmetic progressions . Now all work on Euclidean-Ramsey is the

following . Suppose you give any finite set S in some Euclidean space .

We call it Ramsey if the following situation holds . For every k

there is an nk (ra k depends only on k and on the finite set S) so

that if in 'k-dimensional space you divide - you colour by k colours
or, if you wish, you divide - the points of n k-dimensional space into

k classes, then at least one class contains a set which is congruent

to S . Not similar to S as in Gallai's theorem, but congruent to S .

Now the simplest thing which is Ramsey is a square, a unit square . For

example in 5-dimensional space you can give fifteen points so that i£

you colour them by two colours at least one colour contains a unit

square . And in general we proved that this (the unit square) is Ramsey ;

for every k there is an nk so that you can give a finite set in

nk-dimensional space so that if you colour it by k colours one of them

contains a unit square. Now this is all which we know about . We know

that every brick, i .e . every rectangular parallelepiped, in arbitrary

number of dimensions is Ramsey . We also know that every Ramsey set

must lie on a sphere . These are the only theorems which we have which

are general . The simplest unsolved problem is, for example, is the

triangle, an isosceles triangle where one angle is 120 ° and the others

are 30 ° and 30° , is this triangle Ramsey? In other words is it

true that if nk is large enough then in nk-dimensional space you can

find a finite set so that if you split that finite set into k classes

then at least one class contains a triangle which is congruent to this

triangle? It is surprising how hard this is . We have three papers on

this subject, one appeared in the Journal of Combinatorial Theory in

1973 and two papers appeared in a conference report of a meeting in

Keszthely, Hungary. This meeting was incidentally held in my memory .

By this I mean for my sixtieth birthday .
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There are several other problems in this subject which are perhaps

o£ interest . For example we have .the following nice conjecture which

is really in a way easier to grasp . Is the following theorem true?

Suppose you take the plane and you split the plane into two sets S,

and S2 , so 3 1 U S 2 is the whole plane . Is it true that if you give

an arbitrary triangle which is not equilateral then either 5 1 or 5 2

contains a triangle congruent to this triangle? More generally, if you

split the plane into two classes then at least one of the classes

contains a triangle which is congruent to any given triangle, with the

sole exception of a single equilateral triangle . Now why is that sole
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height is this distance (i .e . the distance between successive lines),

it is easy to see that this triangle does not occur in such a way

that the vertices are all coloured 1 or all coloured 2 . And our

conjecture is that this is the only exception . But we are very far

from being able to prove it . Several special cases have been proved .

We proved it in our first publication for all triangles whose angles

are 120', 30', 30' . Many cases have been settled, but the general

case, despite its simplicity, is not settled .

exception there? Suppose you make

do this :

the strip colouring . That is you

1

2
2 C

1
\1

A B

Now if you take this triangle (ABC), an equilateral triangle, whose



Now another problem which we didn't settle is this . (But this has

been settled in the meantime .) We had the following conjecture in this

paper: suppose you have a set S in the plane and suppose that S has

the following property : no two points of S have distance 1 . Now is

it then true that the complement of S contains four points which form

the vertices of a unit square? This was our conjecture . If you have

a set S which has the property that no two of its points are o£

distance 1 , is it then true that the complement of S contains a

unit square? Now this was proved by a Hungarian lady called R . Juhász .

Actually she proved a stronger theorem . She proved that if - I think

it appeared in the Journal of Combinatorial Theory . . . (Her husband

actually is a man called Csákány . Actually you know some of you may

not be familiar with my language . Usually I refer to the husband simply

as the slave, the wife I refer to as the boss . But I never lectured

in New Zealand before so probably not everyone is aware of this language

of mine . So her slave is a well-known Hungarian algebraisi called

Csákány, Béla Csákány .) She proved the following generalisation : if

you have a set S which contains no two points at distance 1 and

you give an arbitrary set of four points then there is always in the

complement four points which are congruent to them . And she observed

also that you can't generalise that for any k . In other words for

large k it is not true that for any choice of the points x l , . .

the complement of S contains

	

congruent to x l , . .,m k
Maybe it is still true for 5 but for general k this certainly is not

true .

I want to speak about one more problem but before I go there let

me mention a nice old question of Steinhaus . You can find it in the

problem collection of Willy Moser . Steinhaus asked the following

question (this really belongs more to set theory than to elementary

geometry) . Does there exist a set S in the plane which has the

following property : however you put it down in the plane - you take

the set S and you translate or rotate it - every set congruent to
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S contains exactly one lattice point? So you take the ordinary

lattice points, points with integer co-ordinates, does there exist a

set S so that every set congruent to S contains exactly one lattice

point? I am almost certain that such a set does not exist . I have

not been able to prove it . One can reformulate the problem as follows .

Take due + v 2 , where u and v are integers . Clearly in S you

cannot have two points whose distance is áu 2 + o 2 because if you

would have two points with that distance you could place S in such

a way that it should contain two lattice points . So therefore S has

the property that no two of its points have this distance . And if this

is satisfied then no set congruent to S can contain two lattice

points . Now the real problem is can you find such a set which should

always contain one lattice point . I am almost certain that it cannot

but I have no idea how to prove it . And it is quite possible that

this has really- a simple solution - I don't think it has but there may

be a simple solution . Now there is a classical problem due to Tarski,

which is very pretty but this also doesn't belong in elementary geometry .

This is the problem of Tarski . You have a square and a circle which

has the same area. Can you split this (the square) into a finite

number of sets and this (the circle) into a finite number of sets so

that Ai is congruent to Bi . In other words can you split the square

into a finite number of disjoint sets and you can put it together so

that it should be this circle with the same area . It seems to be very

difficult but I don't think this is elementary geometry, this is set

theory . In 3-dimensional space you can do it, even there you don't

have to assume that they have the same volume . That is the famous

Banach-Tarski paradox . You can confuse laymen very badly by telling

them you should take a dollar bill, you can split it into a finite

number of parts and you make two dollar bills out o£ it . Of course

it is obvious cheating because the splitting is not even Lebesgue

measurable . So, you know, it is splitting only in the mathematical

sense . But anyway it is a very striking result . I am glad to say that

Tarski is still alive and kicking, in fact he is getting an honorary
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degree at Calgary in about two weeks time . He is well over eighty now .

Now, so let me go back to elementary geometry . Again I have to go

back about fifty years . In 1931 E . Klein made the following observation .

If you have five points in the plane, no three on a line, they always

contain the vertices of a convex quadrilateral . Very easy to prove

this . Because if you look - (this was once a problem in the Putnam

examination much later) - at the least convex polygon, if it is a

quadrilateral or a pentagon there is nothing to prove . If it is a

triangle (ABC) there are two points (D,E) inside :

you join them and this line (DE) doesn't meet one of the sides and

here is the convex quadrilateral (BDcC) . So this has been proved .

Then she asked, is it true that to every n there is an f(n) so
that if you have j(n) points in the plane, no three on a line, you

can always find n of them which form a convex n-gon? So : is it true

that there is an f(n) so that if you have f (n) points in the plane,
no three on a line, you can always find n of them which form

vertices of a convex n-gon? Now Szekeres and 1 proved that

2 n-2 + 1

	

(n) < 1 2n)

and Szekeres in fact conjectured that the lower bound is the right one .

Now I often call this problem the Happy End problem because Esther Klein

captured Szekeres and they lived happily, ever after in Australia . They

are in Sydney now . Actually between 1938 and 58 I of course didn't see
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them because of the war . I met Szekeres again in University College

library in 1958 and since then we have met in many other places, often

in Australia . So this problem is still unsolved . Now f(S) = 9 -

this has been proved by Turán and Makai . I will just tell some of the

proof (not the whole proof) . If you have nine points in the plane,

you take the least convex polygon which contains the points . If this

is a pentagon or bigger we have nothing to prove, we have the convex

pentagon . It is therefore enough to restrict ourselves to the case

where the least convex polygon is either a triangle or a quadrilateral .

Now the triangle case is a little messy - this was done by Makai - but

Turán has a very ingeniousproof if the least convex polygon is a

quadrilateral . So then you have a quadrilateral and five points

inside . Now if the five points form a convex pentagon there is again

nothing to prove, and you have your pentagon . If not then there is a

triangle and a point inside :

Now you consider these three lines (AB, AD, AC), they divide the

plane into three parts . And there are four points (E,F,C,H) so that

at least one part contains two points, and here (FBADE) is the convex

pentagon . Now it doesn't seem possible to obtain such a proof in

general . For f(6) = 17 you would need probably some sort of

combinatorial reasoning to get that . This we have never been able to

do . So this problem is still open .
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Now there is the following variant which I noticed when I was

once visiting the Szekeres in 1976 in Sydney, the following variant

which is of some interest I think . It goes as follows . n(k) is

derived as follows, if it exists . It is the smallest integer with

the following property . If you have n(k) points in the plane, no

three on a line, then you can always find a convex k-gon with the

additional restriction that it doesn't contain a point in the interior .

You know this goes beyond the theorem of Esther, I not only require

that the k points should form a convex k-gon, I also require that

this convex k-gon should contain none of the points in its interior .

And surprisingly enough this gives a lot of new difficulties . For

example it is trivial that r.(4) is again S , that is no problem .

Because if you have a convex quadrilateral, if no point is inside we

are happy ; if from the five points one of them is inside you draw

the diagonal

	

(AC) :

11ehk
B

and you join these (AE, EC) and now this convex quadrilateral (AECD)

contains none of the points . And if you have four points and the fifth

point is inside then you take this quadrilateral . This is convex again

and has no point in the inside . And Harborth proved that n.(S) = 10 .

f(n) was 9 in Esther Klein's problem but here n(S) is 10 . lie

dedicated his paper to my memory when I became an archaeological
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discovery . When you are 65 you become an archaeological discovery .

Now, nobody has proved that n(6) exists . What would it mean that

it doesn't exist? That you can give, for every t, t points in the

plane, no three on a line and such that every convex hexagon contains

at least one of the points in its interior . It's perfectly possible

that you can do that . Now Harborth suggested to me once that maybe

n(6) exists but r.(7) doesn't . Now I don't know the answer here .

Let me just tell you one or two problems about distances . The

following problem is annoyingly difficult . You have n distinct points

in the plane . How many pairs of points can you give whose distance is

I? Let us denote this by f2 (n) . Now this problem is surprisingly

difficult . I proved in 1946 that

f2 (n) < 2n 3 /2

(that also was a Putnam examination problem) and the lattice points

in the plane give that

f2(n)

	

nl + e/loglogn

This follows from the number of representations of an integer as a

sum of two squares . I think the lower bound is the right one . Anyway

I couldn't even prove that

f2 (n)

n3/2

	

0 .

I offered $25 for this and that has been done by Szemerédi about ten

years ago, and very recently Beck and Spencer proved that

f2 (n) < n3/2

	

c

So they improved the result of Szemerédi by a good bit . But

f2 (n) < n1 + s
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is nowhere in sight . And I give $250 for this . Another $250 for this

problem : if you have n points in the plane, how many distinct distances

do they determine? I think the answer is

n

~I1 o gn

- and you get n/ log by taking the lattice points in the plane . You

see if you take the lattice points in the plane, the distances are

Jut + v 2 and by a theorem of Landau the number of distinct integers

of the form du 2 + v 2 is n/ 1óg . But all I could prove originally

was that n points determine

	

distinct distances . Now this has

been improved by Leo Moser to n2/3 and for a long time, thirty

years, it didn't change . Very recently Fan Chung, a Chinese lady who

works for Bell Labs, improved this to ns/ 7 But the right order I

think may be n/ 1

	

But even the proof of ns/ 7 is very tricky .

Now to end let me ask you a question in elementary geometry . Can

you find n points in the plane, no three on a line, no four on a

circle, which determine n-1 distinct distances and so that the ith

distance occurs i times? By ith distance I mean in any order you

wish . For example if you take an isosceles triangle and you take its

centre
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there are 4 points, 3 distinct distances, and this (DA, OB, OC) occurs

3 times, this (AC, BC) occurs twice and this (AB) occurs one time .

Now I mistakenly asserted that I don't believe that for n > 4 this

is possible . But first Ponmerance showed me a construction for n=5 .

This is what he does . You take a circle :

ÁboL

Here are three of the points (0, A, B), an equilateral triangle (the

sides are 1, 1, 1), here is the fourth point (C), the centre of the

circumscribed circle, and you bisect one of these lines (CB) and here

is the fifth point (D) . It is easy to see that no three are on a line,

no four on a circle ; and this distance (CA, AB, OB, OD) occurs four

times, this (GC, CA, CB) occurs three times, this (CD, BD) occurs

twice and this distance (AD) is unique . And a Hungarian highschool

student also showed you can still do it for six points . I am not sure

if you can do it for seven points . But I think now my time is up .

[Added 19 August, 1982 . Let h(n) be the largest integer so

that if n points are given in the plane no three on a line and no four

on a circle then they determine at least h(n) distinct distances .

Determine or estimate h(n) as well as you can .]

Hungarian Academy of Sciences .
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