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ABSTRACT 

For a given graph G, we consider a B-decomposition of G, i.e., a decomposition of 
G into complete bipartite subgraphs Gt, . . . , G,, such that any edge of G is in exactly 
one of the G,‘s. Let ol(G;B) denote the minimum value of c\ Y(G,)[ over all B- 

decompositions of G. Let CY(N;B) denote the maximum value’ of ~Y(G;B) over all 
graphs on 11 vertices. 

A B-covering of G is a collection of complete bipartite subgraphs G’,,G’l, . . . , G’,, 
such that any edge of G is in one of the G’,. Let p(G;U) denote the minimum value 
of 2 1 Y(G’,)) over all B-coveFings of G and let /301;B) denote the maximum value of 

,8(6;B) over all graphs on II vertices. 

In this paper, we show that for any positive E, we have 

(1-e) n2 n2 
2e log II 

< P(/t;B) < tr(,r;B) < (I+E) - 
2 log II 

where c E= 2.718 - * - is the base of natural logarithms, provided II is sufficienily large. 

* Work done while a consultant at Bell laboratories. 
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Introduction 

For a finite graph G, a decontposition P of G is a family of subgraphs Gt, Cl, , . . , G,, such that any 

edge in G is an edge of exactly one of the Gi’s. If ail Gi’s belong to a specified class of graphs H, such a 

decomposition will be called an H-decomposition of G (see [21). 

Let f denote a cos~jimriott for graphs which assigns certain non-negative real values to all graphs. 

Sometimes it is desirable to decompose a given graph into subgraphs in H such that the total “cost” (the 

sum of the cost function values of all subgraphs) is minimized. In other words, for a given graph G, 

we consider the following: 
J 

a/(G;H) - rnjnCrCG,) ’ 
I 

where P = (GI,G2, . . . , G,) ranges over all H-decompositions of G. 

Also of interest to us will be the quantity 

(Y,.(~;H) - rnp rr,.(G;H) 

where C ranges over all graphs on 11 vertices. 

If we take f, to be the counting function, which assigns value 1 to any graph, and P is the family of 

all planar graphs, then u,~(G; P) is simply the thickness of G. If F denotes the family of forests, then 

a,Y(G;f) is called the arboricity of G (see 161). Many results along these lines are available. The 

murder is referred to (21 for a brief survey. 
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In this paper, we will deal almost exclusively with the case in which H is B, the family of complete 

bipartite graphs. By a theorem in bl, the value of CX~~OI;B) is given by: 

c+:B) - n-l . 

We consider the cost function J, the value f,(G) is just the number of vertices in G. In the 

remaining part of the paper, we abbreviate where cu(n) = rr,,,Oz;B) and a(G) = a,,(G;B). In particu- 

lar, we show for any given B and sufficiently large n, 

(1-c) n2 n2 - < a(n) < (l+d - 
2elogn 210g N 

(1) 

where esatisfies In e = 1. 

An H-covering of G is a collection of subgraphs of G, say G’I, . . . , G’,,, such that any edge of G is 

in at least one of the Gli, and all C’, are in b. For a given cost function f, we can define 

/?,.(GB;H) - rnjn x S(G’,> 

where P - (G’l, , . . , G’,,) ranges over all Hicoverings of G. 

It is easily seen that 

and 

&(G;H) < u, (G;ZI) 

,+I;H> < cu,(n;H) . 

We will show that the asymptotic growth of /3,,Oz;B) is quite similar to ru,,(n;U). In fact, we will 

obtain the same upper and lower bounds for p,,(n;B) as those for cu,,,(~;B) in (I). 

A Lor+er Bound 

We derive these bounds mainly by probablistic methods, which have been extensively described in 

the book by two of the authors [4]. 

Tkorm (1(/Z) 2 (1-t) f12 - for any given positive e and sufficiently large tt. 
2clogt1 

ProoJ Let us consider a random graph G with II vertices and [11’/2c~j edges. The probability of G con- 

taining a complete bipartite subgraph K,,, is bounded above by 
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t1 II I II 1 a be 
-ob < ,&d-b)lo~ ,I-trb 

(where [.~j and Is] denote the greatest integer less than xand the least integer greater than X, respec- 

tively. 1 

Let Sdenote the set of all unordered pairs {a,b} satisfying 

1-e 
1 < a. b < n, $ < - 

log n 
for the given E. Any (a.61 E S is said to be maximal if for any other (a’,b’}cS we have 6’ > b when 

i 
ae{a,b) n {a’,b’) f (b. Let S’ be the set of all maximal elements in S. The probability of C contain- 

a+b ing one of the complete bipartite subgraphs Ko.b with - 
ab 

< 1-E 
- is bounded above by 
logn 

< log n e-f(‘oyn)2 < 1 

for large )I since the number of elements in S’ is less than log n. 

Therefore, there exists a graph G with n vertices and 111*/2~( edges such that G does not contain any 

KU., as a subgraph. Let P = (Gt,Gl, . . . , G,} denote a B-decomposition of G such that a(G) is the 

sum of the sizes of vertex set V(G,) of G,. i.e., 

a(G) - i 1 V(G,)l. 
r-l 

For any edge CU,V) in G, we define 

I vtal 
f(fr*“) = IE(G,) 1 

where (~r.r) is in E(G,), the edge set of G,. 

It is easily seen that 
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c-i-d > l--E 
Since C does not contain K,, as a subgraph, any G, = K,,, 1 < i < I. satisfies that CJ , - 

log n * 

Thus we have 

for uny (u,v} in E(G) 

and 

a(n) > a(G) > 
(1-E) ,?I 
2elogn 

for sufficiently large II. This proves the theorem. 

An Upper Bound 

First, we shall prove a preliminary result. 

Lemma: For any E > 0 any graph on n vertices and p y II 
edges contains a complete bipartite graph K,, 

as a subgraph where I = [(I-E) np’j and s < cpn for n sufficiently large. 

Proof: Suppose G has 11 vertices and p edges and G does not contain K,, as a subgraph. From the 

proof in [31, the following holds: 

n(pn--s)* < (I-11.~‘. 

However, on the other hand, we have 

(2) 

This contradicts (2). Thus G must contain A’,.,. 

Tircvrr~n 2: For any given e, we have 

if n is large enough. 

CT(n) < (1+c) -d- 
210g/r 

(3) 

PRM/: From Lemma 1, one can easily verify that a graph G on p 2 
(1 edges and /I vcrticss contains a sub- 

graph ff isomorphic to K,,, where s - [(l-et) log ~r//ox!I/p)j and I = 1s’ log (I/p)] and 

t 1 > I kmJ// I2 
~ . We will decompose G into complete bipartite subgraphs.by a “greedy algorithm”. Given 

- P 0 

G we ftnd a subgraph I( isomorphic to K,, and let G, to be the subgraph of G containing all edges of G 



except those in H. Now, we find a subgraph HI isomorphic to K,, ,l and let Gj to be a subgraph of Gt 

containing all edges of Gt except those in Ht and continue in this fashion until only 42 
n2 

- edges are 
logn 

left. Thus G is decomposed into H,Ht, . . . , together with ~2 L 
logn 

edges and we have the following 

recursive relation 

a(G) < s + t f a(Gl), 

We will prove by induction that for a given ~2.6~ 3 0 and sufficiently large II the following holds, 

.= a(G) < Al++----- 5 rJ= 
210gn o4 

log (l/x)& -i- 262 - 
logtt - 

By the induction assumptions, we have 

n2 p 
a(G) < Cl-eJ) (log~l)2/(log(l/p))3 + (l+r& - s 

n2 
2logt1 0 

/ug(I/x)d.u + 2e2 - 
log n 

where p’ - (IE(G)l-stV[;] 
logn 

for ti sufficiently large. in particular, - 
n2 

< c2e3 suffices. 

It suffkes to show that 

(l-~J>((ogr~)2/(Iug(1/p))3 -t (l+s~$-Jlog(li.~)liX 
t ofl 

This can be verified by straightforward calculation. Thus (4) is proved and we have 

for given e > 0. Theorem 2 is proved. 

By slightly modifying the proofs of Theorem 1, we can easily prove the following. 

p,l(tt;B) 2 (1-r) /I2 
2ia log )I 

for any positive F and sufficiently large jr. 
- 
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Therefore we have 

(1-e) n2 
2e log II 

< P,,(n;B) < a,,(n;B) < (l+~) -J!- 
2 log n 

for any given positive E and sufftciently large n, which summarizes the main results of the paper. 

Some Related Questions 

As we noted earlier, the lower bound is obtained by probabilistic method which is nonconstructive. 

It would be of great interest to find an explicit construction of a graph G on n vertices, cl ,&/log tr edges 

(or C~II’ edges) which does not contain an Kc,tog,,,r,log,, as a subgraph for some constants cl,cz and ~3. 

Another interesting problem which has long been conjectured [41 concerns the Tura’n number 

T(K,*,:n), the maximum number of edges a graph on n vertices can have which does not contain K,,, 

as a subgraph. Is it true that 

TW,,;n) = O(n’-“? ? 

For the case I = 3, the above equality has been verified in [Il. 

In this paper, we have shown that a,,,(n;B) - O(,?/log,r). However, we do not know the 

existence of 

obviously. 

lim 
c~,,(n;B) 

or lim 
P,,(n;B) 

II-Q) n’/lOg n n-* n2/log n ’ 

Let G,, be the set of all the 2 
$9 

labelled graphs on II vertices. It would be of interest to evaluate 

c rr(G;lI). It is not unreasonable to conjecture that 
ccc; R 

C KY,,, (G;B) 

lim 
GEG,, 

=c 
n-00 

2 ($ 
n2/log n 

exists and c is probably equal to lim 
cY,,(n;D) 

‘I-- n2/log n * 
We can also ask the analogous question for P,,(G;B). 

Lc I G ,, ,,, be the set of all graphs on 11 vertices and I)? edges. We can define a,(~,~r;Il) to be the 

ma\rmum value of n,(G;II) where G ranges over all grtlphs in G,,,,,;. In this paper we investigate 

a,,(n,ut;Il) wher e IFI is about 11~/2c. One could also investigate CU,,(II.I~~;~~) or p,,(n.m;B). In 
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particular, we can ask the problem of determining 111 so that aCn,~r;B) is maximized or to iind the 

range for HI for which we have 1 = o(m2). 
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