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AN EXTREMAL PROBLEM FOR COMPLETE BIPARTITE GRAPHS

P. ERDŐS, R. J. FAUDREE, C . C. ROUSSEAU and R. H. SCHELP

Dedicated to the memory of Paul Turán

Abstract

Define f(n, k) to be the largest integer q such that for every graph G of order n and size q,
G contains every complete bipartite graph K u, ,, with a+h=n-k . We obtain (i) exact values for
f(n, 0) and f(n, 1), (ii) upper and lower bounds for f(n, k) when ku2 is fixed and n is large,
and (iii) an upper bound for f(n, lenl) .

1 . Introduction

Extremal graph theory, which was initiated by Turán in 1941 [4], is still the
source of many interesting and difficult problems . The standard problem is to deter-
mine f(n, G), the smallest integer q such that every graph with n vertices and q edges
contains a subgraph isomorphic to G . It is striking that whereas Turán completely
determined f(n, Km), there is much which is as yet unknown concerning f(n, Ka, b ) .
In this paper, we consider a variant of the extremal problem for complete bipartite
graphs . In this variant we ask how many edges must be deleted from K„ so that
the resulting graph no longer contains Ka ,, for some pair (a, b) with a+b=in .
Specifically, we seek to determine an extremal function f(n, k) defined as follows .
For in ::- 1, let B,,, denote the class of all graphs G such that GDKa , b for every
pair (a, b) with a+b=m . Then for n>-k+1, f(n, k) is the largest integer q such

that every graph G of order n and size (2)-q is a member of B,,-k' In this paper
we obtain exact values for f(n, 0) and f(n, 1), upper and lower bounds for f(n, k)
when k>1 is fixed and n is large, and an upper bound for f(n, [en]) .

2. Terminology and notation

All graphs considered in this paper will be ordinary graphs, i .e . finite, un-
directed graphs, without loops or multiple edges .

A graph with vertex set V and edge set E will be denoted G(V, E). If I V I =p
and IEI =q, G is said to be of order p and size q . With X, Y(--- V, the set of edges
in E of the form {x, )} where x E X and y E Y will be denoted E(X, Y) . The
complement of G will be denoted G .
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The size of G will be given by q(G) . The order of the largest connected component
will be given by p(G) and the order of the smallest connected component will be
given by q(G) . In particular, q(G)=1 means that G contains an isolated vertex .

Let A be a finite set . Then A' will denote the Cartesian product AX AX . . . X A
with k factors and [A]' will denote the collector of k-element subsets of A .

Where x is a real number, [xi and [x[ denote the greatest integer :x and the
least integer -x, respectively .

For any notation or terminology not explicitly mentioned in this section, we
rifer the reader to [1] or [2] .

3. Calculation of f (n, k) where k is fixed

Our starting point is the following simple observation . If G is of order n and
,u(G)>[n/2l, then G Kp , n with a=[n/2], b=[n/2j and so GAB„ . The opposite
direction is described by the following useful lemma .

LEMMA 1 . If G (V, E) is a graph of order n such that (i) p (G) -- {n/2), (ii)q(G)=l,
and (iii) q(G) =[2n/3j-1, then GEB,, . This result is sharp .

PROOF . The proof is by induction on n . If n=2, then G is required to be empty
and so the conclusion holds . Let u(G)=k . It is easy to see that the result holds if
k=1 or 2, so we may assume that k--3 . Let H=G-X, where X is a component of
order k . Then H is a graph of order n-k and q(H)=1 . Now q(H)-[2n/3j-k
-[2(n-k)/3]-1, the second inequality being by virtue of the fact that k--3 . Also,
p(H)-min (k, [2n/3j-k+1). If 3k-n, then k-l(n-k)/21 and if 3k-n+1, then
[2n/3] -k+1-_[(n-k)/21 . Hence, in all cases H satisfies (i)-(iii) and so, by the
induction hypothesis, HEB„_k • Since X and h are completely joined in G, it
follows that G E B„ .

From the remark made earlier, we know that condition (i) cannot be weakened .
To see that (ü) cannot be weakened, note that if q (G)~:-1, then (71K,,,-,. Finally,
with n_-7 set m=[(n+1)/3J+1, k=[n/3j+1, I=n-m-k and consider the graph
G =TU Tk U 91 , where T,,, and T, denote arbitrary trees of orders m and k, respec-
tively . In this case, we have p (G) - [n/21, q(G)=l and q(G)=[2n/3J. However,
G ?K,,b with a=[2n/3]+i, b=[n/31-1 . This example shows that condition (iii)
cannot be weakened . O

With the aid of Lemma 1, we can obtain the exact value of f(,,,, k) in case
k=0 or 1 .

THEOREM 1 . For all n-_2, f(n, 0)=[n/21-1 andfor all n--3, f(n, 1)=[(n+1)/21 .

PROOF . With m=[n/2]+1, let G=T,,UK„_,,,, where T,,, denotes an arbitrary
tree of order m . Thus, G is a graph of order n, q(G) =[n/2l and a (G) = [n/21 + 1 . Since
p(G)>[n/2j, it follows that G4B,, and this example shows that f(n, 0)--[n/2l-1 .
To prove the inequality in the other sense, consider an arbitrary graph G of order
n and size q(G)-_[n/2l-l . Note that such a graph roust satisfy (i) µ(G)--[n/2J,
(ü) q(G)=1, and (iii) q(G)--[2n/3j-1 . Hence, by Lemma 1, GE B n .

With m = [(n + i )/2] + 1, let G =C,,, U K„ _,,,, where C,,, denotes the cycle of
order m. Thus, G is a graph of order n and size q(G)=[(n+1)/2]+1 . Moreover,
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if x is an arbitrary vertex of G, then u (G -x) ~-- [(n + 1)/21> [(n -1)/21 . It follows
that for each x G-x Ka, b with a=[(n-1)/21, b=[(n-1)/2] and so this example
shows that f(n, 1)-_[(n+1)/21. To prove the inequality in the other sense, con-
sider an arbitrary graph G of order n and size q(G)-[(n+1)/21 . Let x be a vertex
of maximal degree in G, and let H=G-x. If x has degree -2, then q(H) :::~
[(n+1)/21-2=[(n-1)/21-1 . If x has degree :1, then G is the union of a collec-

tion of disjoint edges and so in this case as well q(H)-[(n-1)/21-1 . Therefore,
by the first part of this theorem, HEBn _ 1 and so GEB„_ i . O

COROLLARY . Let t(n) denote the largest integer q such that for every graph G
of order n and size q, G contains every tree of order n . For all n-2, t(rt)=[n/21-1 .

PROOF . Since each tree of order n is contained in an appropriate complete
bipartite graph Ka , b with a+b=n, it follows that t(n)~f(n, 0)=[n/21-1 . On the
other hand, the graph G=(n/2)P2 (n even) or G=((n-3)/2)P2 UP3 (n odd) is a
graph of order n and size q(G)=[n/21 such that (Here, mH is used to
denote the graph with m components, each isomorphic to H .) This example shows
that t(n)--[n/21-1 . 0

At this point, one may be tempted to conjecture that for each fixed value of k,
f(n, k)=n/2+0(1), perhaps even exactly calculable as in the case of k=0 or
k=1 . In fact, we find that for all k-2, n/2+A l/n <f(n, k)-: n12 +B }fin, where
the positive numbers A and B depend only on k . Thus, there is a very striking dif-
ference between the case of k=1 and that of k=2. In order to establish the facts
concerning the behavior of f(n, k) when k-2, we shall need several preliminary
results .

The following lemma uses the term suspended path . A path xo , x,, . . ., x k in
a graph G will be called suspended if its interior vertices x,, . . ., xk_, are of degree 2
in G, whereas its end vertices (xo and xk) have degree 2 .

LEMMA 2. Any tree having k vertices of degree 1 is the union of at most 2k-3
edge-disjoint suspended paths .

PROOF . The proof is left to the reader .

LEMMA 3. Let T be a tree of order n + 1 where n -2 . There exists a vertex x
such that p(T-x)-[n/21 . Consequently, there is a partition of the components of
T-x into two parts such that each part has at least [n/31 vertices .

PROOF . The proof is left to the reader.
LEMMA 4. Let G(V, E) be a connected graph of order p and size p+I-1 .

With k-2, set 6=min ([k/21/(41-3), 1/4). Then, there exists XE[V] k such that
u(G-x)--[(1-b)pl

PROOF. Delete I edges from G in such a way that the resulting graph H is still
connected, i .e . so that H is a tree . The deleted edges determine a subtree T in the
following way . First, we find those vertices which were incident in G with one of the
deleted edges and so define a set A . Then, we define T to be the union of all paths
in H which join pairs of vertices from A. Let A, denote the vertices of A which
have degree 1 in T and set A2 =A- A, . According to Lemma 2, T is the union of
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at most 2 1 A, I -3 edge-disjoint suspended paths . The vertices of A, now subdivide
these suspended paths into what we shall call elementary paths . The elementary
paths may be described in the following way . The end-vertices of the elementary
paths are precisely those vertices x such that either (i) xEA or (ü) deg (x)>2 in T.
Suppose that there are r elementary paths P,, P 2 , . . ., P, . Since JAI-21, it follows
that r-2IA,J+IA,I-3-41-3 .

Note the following useful property of the construction described thus far. Sup-
pose that x is a vertex of G and that it is not a vertex of T. Then, there is a unique
path in G from x to T. If there were two such paths, then one of them would have
to use one of the edges which were deleted in going from G to H. This would put
x on a path in H joining two vertices from A and so force x to belong to T. In light
of this property, we note that the collection of elementary paths P„ P2 i . . ., P,
may be used to define a partition V=(V,, V2 , . . ., V,.) of the vertices of G according
to the following scheme . If x is an end-vertex of one or more elementary paths, it
is identified with an arbitrarily chosen one of those paths . If x is an interior vertex
of an elementary path, it is identified with that path . Finally, if x is a vertex of G
which is not a vertex of T, let w be the other end-vertex of the unique path from x
to T and identify x with the same elementary path as is w .

Now we are ready to describe and put to use the crucial properties of the ele-
mentary paths . Let u, and v; be the end-vertices of the i` h elementary path, P ; . Our
construction insures that if x is any vertex of V other than u i or v„ every path from
x to a vertex in V-V contains either u i or v i . In other words, by deleting ui and
v; from G, we completely disconnect the vertices of V from the remaining vertices
of G. Without loss of generality, we may suppose that I VI _- . . . ~ I V,J . Set
m=min ([r/4], [k/2]) and consider the graph G-X, where X={u„ v i , i=1, . . ., m).
Since I V,I + . . . +IV»I -mp/r?8p, it follows that µ(G-X) satisfies the stated bound
unless IV,J>[(1-6)p] . In case IVI>[(1 -S)p], set B=V,U{u,,v,) and con-
sider the tree T' spanned by the vertices of B . By Lemma 3, there exists a vertex x
of this tree such that the components of T'-x can be partitioned into two parts,
each of cardinality at least [(I V,I -1)/3] . Now we may delete x and either u, or v,,
whichever is appropriate, and so disconnect from G a set of at least [p/4] vertices .
In this case, for X= {x, u,) or {x, v,) we obtain µ(G-X)-[3p/4]. l]

Now we are prepared to prove our theorem concerning f(n, k) with k~-- 2 .

THEOREM 2. Let k>-l befixed and set A=V[k/2]/16 and B=~3k(k-1)/(k-}-1) .
Then, for all sufficiently large n,

n/2 + A 11-n < f (n, k) < n/2 + B ]fin .

PROOF . Let G(V, E) be a graph of order n and size q=n/2+d, where d =A jin .
We wish to prove that there exists XE[V]k such that G-X satisfies the conditions
of Lemma 1. This will establish the lower bound for f(n, k) . Since d =o(n), it
follows that the number of connected components of G is at least n-q=n/2-o(n) .
Consequently, rl(G)-2 . On the other hand, if rl(G)=2, then µ(G)=o(n) and so
by deleting just one vertex from G we obtain a graph which satisfies the conditions
of Lemma l . Hence, we now assume that q(G)=1 . Since this is the case, we may
assume that u(G)>[(n-k)/2], in fact µ(G)>[(n+k)/2] for, otherwise, we may
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simply delete any k vertices from the largest component . Suppose that the largest
component is of order p and size p+1-1 . Hence, we have the bounds p-q=n/2+d
and lfq-p+1 :4 . With a view toward applying Lemma4, note that if
6=[k/2]/(41-3) then (I-6)p<(I-[k/2]/4d)(n/2+d)<n/2+(42-[kl2]n/8)/d . There-
fore, in this case and with our choice of d, we have [(1-6)p1-[(n-k)/21 . Cer-
tainly if 6=1/4, [(1-6)p]-[(n-k)/2] and so the desired result follows from
Lemma 4 .

The upper bound is established by the following simple construction . With m
chosen to be an even integer, let H be a graph of order m which is regular of degree
k+ 1 and (k+ 1)-connected . An example of such a graph has vertices 0, 1, . . ., m- I
with two vertices i and j joined if i-[(k+1)/2]-j-i+[(k+1)/2] (mod m) and, if
k+1 is odd, i is joined to i+m/2 for l-i-m/2. The fact that such a graph is,
indeed, (k+1)-connected was proved by Harary in [3] and the proof is also given
in [1, pp . 48-49]. Set r=m(k+1)/2 and let the edges of H be e,, e2 , . . ., e, . For
i=1, 2, . . ., r, insert a vertex y i subdividing ei and make y i adjacent to li -1 new
vertices . Finally, add isolated vertices so that the resulting graph G(V, E) is of
order n . Thus, G is of size q(G)=r+(1,+ . . .+1,) . Without loss of generality, we
may assume that h 12 . . . l, . Now make the followin g choices for the para-
meters of G. Set m=2rV5kn/8(k2 -1)] and 1,= . ..=1k=(1/5(ík-1)n/8k(k+1)J=1.
Then choose 1, +,, . . ., l, so that in+(lk+i+ . . .+1,)=[(n-k)/21+1 . Let Y= (Y' , . . ., yk } .
It is apparent that for every XE[V] k , we have u(G-X) --µ(G - Y) = [(n - k)/21 +1 .
Also, we have q(G)=[(n-k)/21+1+k1+(k-I)m/2<n/2+Byn for every e>0.
Since µ(G-X)>{(n-k)/2} for every XE[V]k, it follows that GgB„_k . This
establishes the upper bound . R

4. An upper bound for f (n, [en])

At present, very little is known about f(n, k) when k- - with n . However,
the results of the preceding section suggest that ,f(n, [en])<[(1/2+6)nl, where 610
with e and this much can be proved without difficulty .

THEOREM 3 . Let 0<e<e_ 4 be fixed and set 6=j~6e log (1/e). For all suffi-
ciently large values of n,

.f (n, [enD < [(1/2+6)n] .

PROOF. Set p=[1/2(1+6)n1, q=[(1/2+6)n], k=[en], r=q-p, a=[(n-k)/21,
b=[(n-k)/2], and c=a+p-n. Using the probabilistic method, we shall prove the
existence of a graph G of order n and size --q such that G =TK,,, b . Let V={1,2, . . .,n),
X= {1, 2, . . ., p} and Y=[V]2 . The probability space used to prove the existence
of G may be described as follows . Let 0=01X02 where Sh=XP and Sl 2=Yr.
Each point in Q is given probability I1JQJ . A typical point in Q is w=(co1 , co t )
where co,=(x,, . . ., x,) and cot =(y1 , . . ., yr ). Corresponding to co there is a graph
defined as follows : {i,j} is an edge in the graph for each occurrence of xi =j,
x i =i or yk={i, j}, k=1, . . ., r. It is understood that any loops and/or extra edges
which may be generated by the random method are simply not included in the
graph so formed . If G2 K,, n then for some m, c m=a, there are disjoint sub-
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sets of X, namely A and B with IAI =m and JBj =p-k-m, such that E(A, B)=cp .
Now for fixed A and B, consider the event E(A, B)=cp . The number of points
of 52, in this event is (m+k)m(p-ni)P -k-mpk and the number of points of 522 in

this event is ((2n)_ m(p-k-m) r . Hence, we obtain the bound

Prob(G ? K,,

	

a ( p ) (
p-m) (m+k)m(pam)p-k-mpk 1_m(p-k-m)

r

b) Z
M

	

k

	

p

	

(2)

Using Stirling's formula and some elementary bounds, we find that each term in
the sum is bounded by

(1 +2kln)n (p/k) k (1-a(p-k-a)I
(2))' .

Substituting the values of a, k, p and r, we find that Prob (GDK,,,6)--0 as n -- -
provided that (1 +2E)((1 +S)/2E)E(1-(1-E)(Ú-E)/2)á~2< 1 . A simple calculation
shows this to be the case when 0-:s-_e-4 and 6=V6E log (1/E). C

5. Additional problems and results

The bound for f(n, lenj) provides a satisfying tie with the results for f(n, k)
where k is fixed ; still, it leaves us with more questions than answers . Among other
things, the result shows that if F( E)

def
lim f(n, [Enj)ln exists, then lim F(e)=1/2.
n---

	

E10
But, does lim f(n, [Enj)/n exist?n--

PROBLEM 1 . For 0<x< 1, does lim f(n, [xnj)/n exist?
n--

By a variety of simple arguments, it is possible to prove bounds of the form
F,(x)< f(n, (xnj)ln< F2 (x) which hold when 0<x< 1 is fixed and n is sufficiently
large. Hence, it is at least plausible that lim f(n, lxnj)ln exists . As an example of

n-m
an upper bound for f(n, (xnj)ln, we give the following argument . Starting with
the complete graph Kn , we wish to remove q=lynj edges e,, e2 , . . ., e q in such
a way that all Km, m subgraphs with m=j(1-x)n/21 are destroyed . Having found
such a number y, we are assured that f (n, jxnj)ln< y . Let Xi denote the set of

Km, m subgraphs which remain after e ; has been removed . Clearly, JX j=(ni) (n In
M) .

At the stage of removing the edge ei+, there are JXij remaining Kn,,,n subgraphs and

(2 -i remaining edges . Counting multiplicity, the remaining Km , m subgraphs con-

tain IXi I m2 edges . It follows that there is an edge whose removal destroys at least

1XiIm 2l(2) of the subgraphs in Xi . By choosing such an edge for ei+ ,, we obtain

IXi+,1=
I
Xij (1-m21(2)) . Following such a procedure for i=1, 2, . . ., q, we obtain
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IXII < (nM)(nni
m) 1_,,2 (2) 9 . An easy calculation using Stirling's formula allows

us to conclude that if y is chosen so that (1-(1-x)212)y< ((1-x)12)1-xxx and n
is sufficiently large, then IX,I=O . As x--0, the upper bound for f(n, [xnl)1n that
is obtained by this argument is quite inferior to the bound given in Theorem 3 .
The advantage of this argument is that it is applicable for all x satisfying 0<x< 1 .

The second problem is not concerned with the calculation of f(n, k), but is
certainly related to the investigation described in this paper .

PROBLEM 2 . For all n-2, determine the largest integer m=f(n) such that for
every tree T of order n, TEB„, .

We have obtained upper and lower bounds for f(n) and these results may be
published elsewhere .

Finally, we note the following generalization of the basic problem considered
in this paper .

PROBLEM 3 . For r_2 and n ;k+r, let fr (n, k) denote the largest integer
q such that for every graph G of order n and size q, G DK(a l , . . ., a,) for every parti-
tion (a,, . . ., a,) of n - k into r parts . Determine f, (n, k) .

The proofs given in this paper extend naturally and easil ; ~o the study off,(n, k).
For r=3, the induction argument used in the proof of Lemma 1 yields the fol-
lowing result .

LEMMA. Let r_-3 . If G is a graph of order n such that (i) µ(G)-fn1rl and
(ü) q(G)-[2nl(r+1)l-1, then G ;?K(al , . . ., a,) for every partition (a l , . . ., a,) of n .

Now we can state the following generalizations of Theorems 1, 2 and 3. The
reader will find that the proofs given earlier in the paper have been so structured
that they readily yield the results now stated .

THEOREM . For all r_-2 and n _-r, , f, (n, 0) = f nlrl -1 . Except for certain excep-
tional cases, ,(j, 1)=((n-1)/rl+l holds for all r_-2 and n--r+1 . The excep-
tional cases are f3(4, 1)=1, .f3(ó, 1)=2,f,(8, 1)=3 and, for r--4, fr(r+1, 1)=1 and
f,(r+2, 1)=f,(r+3, 1)=2 .

THEOREM . Let r, k ::- l befixed and set A=V[kl21/8r and B=V6k(k-1)1((k+1)r) .
Then, for all sufficiently large n,

n1r+A jin < fr(n, k) < n1r+BVn .

THEOREM . Let 0<E<e` be fixed and set 6=Vr(r+1)E log (11E) . For all
sufficiently large values of n,

f,(n, [en]) < [(11r+6)nl .

Exactly as in the special case of r=2, the methods used in this paper provide
an effective means of studying f,(n, k) only when k«n . Thus, for example, the
generalization of Problem 1 to consider f,(n, lxnJ), 0-<x--1, is an important
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problem about which little is known at present . With n and r fixed, f,(n, k) is defined
for 0--k--n-r, and it is worth pointing out that in addition to the k=0 and
k=1 cases, f, (n, k) is known exactly for k=n-r . We know that f,(n, n-r)=
=(n-r+t+l)s/2-1, where n=(r-1)s+t, 0--t<r-1 . This is Turán's theorem .
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