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We consider dual pairs of packing and covering integer linear programs. Best possible
bounds are found between their optimal values . Tight inequalities are obtained relating the integral
optima and the optimal rational solutions.

1 . Introduction

It is well recognized that a large part of combinatorics can be formulated in
terms of integer linear programs . A particularly satisfying situation occurs when the
linear program and its dual both have integral solutions . In this case the optima
of the programs are equal by the duality theorem of linear programming, and there
results a min-max theorem. Apart from their aesthetic value, these cases are impor-
tant in that polynomial time algorithms are available for computing the quantities
involved . However, in most combinatorial problems, the solutions of the correspond-
ing linear program or its dual are not integral . Since, by the duality theorem of linear
programming the rational solutions to both programs are equal, the following
question naturally arises : how much can the integral optima differ? And how far can
each of them be from the rational optimum? 'Ihe purpose of this paper is to obtain
bounds on the distances between these quantities .

In fact, we shall be dealing only with a restricted class of linear programs, that
is, with programs of the form :

maxx •1

(L)

	

Ax ' 1

x ~- 0
and its dual

min y •I

(D)

	

yA - 1
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where A is a 0-1 matrix of dimensions nX m . Let z be the integral optimum of (L)
(i .e . the maximum in (L) where x ranges over all nonnegative integral vectors of
dimension m), Z the integral optimum of (D) and q the common rational optimum
of (L) and (D). The matrix A can be viewed as the incidence matrix of a hypergraph
H on n vertices having m edges .

We shall interchangeably refer to A as a matrix and as a hypergraph . Thus
vertices will be interchanged with rows and edges with columns . For example, when
we speak about the size of an edge in A we mean the number of 1's in the correspond-
ing column of the matrix.

In hypergraph terms z is the matching number of H, namely the largest number
of mutually disjoint edges . Simiarly, Z has a combinatorial interpretation as the
covering number of H, that is the least size of a set of vertices meeting every edge .
The parameter q is commonly refered to as the optimal fractional matching number
or the optimal fractional covering number of H. The obvious relationship linking
them is Z-q-z .

Lovász [4] found the following inequality relating Z and q .

Z -- ql(1 +ln d)

where d is the largest degree of a vertex in H (i.e . the largest sum of a row in A.)
This result can be shown also by the methoods of [3] . The result is effective in that it
is possible to find in time polynomial in m and n a set of not more than q1(1+In d)
vertices which meets all edges . It is also sharp, namely there exists a positive constant
c such that for every q and d there exists a hypergraph for which ql(1+1n d)<cZ.
In this paper we study the two remaining relationships : between z and q, and be-
tween z and Z.

2. An inequality relating z and q

Theorem. Let z, q, n and in be defined as above, and let f be the least size of
an edge. Then

Z

n --

	

q 2
M

q 2

n

Proof. Let x be a rational vector at which the maximum in (L) is attained, that is,
Ax:_!E~l, xá- 0 and x • 1=,fxi = q . Then

(1)

	

xTA TAx 1 • 1 = n .

Let C be the mX in matrix whose (i, j) entry is 1 if A i nA; 5z 0 and 0 otherwise . The
(i, j) entry of ATA is JA i nAJ, and hence

(2)

	

ATA - diag (jAJ -1)+ C .

By (1) and (2)

(3)

	

n = xTA TAx - xT dlag(IAi l -- 1)x+xTCx .



DUAL. INTEGER PROGRAMS

By the Cauchy Schwartz inequality we have

(4)
m

xTdiag(IA iI-1)x= Z (IA;I-1)x2
i=L

1

	

2
(f-1)Z x2 (.f-1) (Z xi)2 = (f-1)

To estimate x: TCx we use a theorem of Motzkin and Straus [5] .

Theorem MS . Let G=(W, F) be a graph . The maximum of

	

xixi , where
[i> i] E F

x, (iEW) are nonnegative and fxi= 1, is (1-1'/k)/2, where k is the size of the
largest clique in G (it is attained by putting xi = 1/k on the vertices of'a largest -clique
and zero elsewhere .)

Let now W=E and F={[i, j] : A i nAi=0}, and let G=(W, F) . The size
of the largest clique in G is z . 'Ihe adjacency matrix of G is B=J-C, where J is
the all I's mX in matrix. Hence

xix; 1/2x'Bx .
[i.i] E

Thus Theorem MS yields

1

	

1
(5)

	

xTBx (1-z a xi) 2 = q2 (1- z

Combining (3), (4) and (5) and noting that x"1Jx=(Zxi ) 2=q 2, we have

(6)

	

n = xTA TAx -- q'2 I m l	 +í - (1V z )) = g 2 (fm 1 + z

z
q 2

15

which is the desired inequality .
In fact, the inequality in the theorem can be slightly improved, using the follow-

ing idea of Z . Füredi . The optimum of (L) is attained at a vector x with at most n
nonzero coordinates . Hence, if m>n, we can omit an edge without changing q,
while z can only decrease by such a step . Thus we may replace m in the theorem by
min (m, n), to obtain

	 f-1

	

q2n-	min (m, n)

If his a projective plane of order p then there holds m=n=p2+p+ 1, z=1 (every
two lines meet), j=p+1 and q=m/f . In this case equality holds in the theorem,
showing the tightness of our inequality . But we suspect that the inequality can be
improved when the size of the edges or the degree of each vertex are small . For
example, if H is a graph, then by [3] the maximal rational mathcing x takes values
U, l/2 and 1 . Let a be the number of edges at which x has value 1/2 and b the number
of edges on which x is 1 . Then q=a/2+b, while n--a+2b . The edges on which x
has value form chains and circuits, and by taking edges on each chain and circuit
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alternately, an integral matching can be formed whose value is at least a13+b.
Thus z~--2g13, and it is easy to deduce that always z~4g21(3n) .

Finally, let us note that an integral matching satisfying the inequality in the
theorem can be found in polynomial time. A rational vector x at which the optimum
of (L) is attained can be found in polynomial time, using the ellipsoid method . Once
x is found, the way to find a large matching is exactly as in [MS] : If xi , x;>0 with
A inA; 0, then consider the vectors u, v defined by

xk

	

k

	

i, j

	

xk

	

k

	

i, j
uk = xi+xj k=i

	

vk = 0

	

k=i
0

	

k = j

	

x;+xf k=j.

It is easily verified that Zui=Zv i=Zx i and

max (UTBu, vTBv) ~--- x TBx.

By continuing in this fashion we will produce a vector w which is supported
on a matching and which satisfies wTBw-xTBx, and Zwi=,Zxi .

It is again clear that if the support of w has p members, then

wTBw (1-
1
) (~

p

	

X ,)2 .

Thus the matching which supports w has

	 92_
p y

h
f-1

-
m

edges and it is clearly found in polynomial time .

3. An inequality relating z and Z

The question we shall consider in this section is : given m, n and z, how large
can Z be? Whenever m>eVnz, define : g(m, n, z)=YnzIn (mlVnz) . We can then
prove the following :

Theorem 2. Let m, z, Z and g=g(m, n, z) be defined as above. Then

(7)
min (n, 3g) if m > e }~nz

Zc ~In

	

if m-evnz

Moreover, these inequalities are best possible in the regions m<e j nz and m::-en,
in the following sense: there exists a constant a>0 (a=115 will do) such that for
m, n, z in these ranges, there exists a matrix A of dimensions m X n, for which E • z (A) : z
and

(lle)Z(A)

	

mn (n, 3g) mn
- e nz
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(Note : Z. Füredi and J. Pach [2] have informed us that they obtained a similar
result for z=1 .)

Proof. Since Z-m is trivially valid, for the proof of the first part we have to show
that Z:-!53g for m > e Vnz . Let r= g/z = V(nlz) In (ml Vnz) . We construct a cover
(i .e . a set of vertices meeting all edges) of size not greater than 3g, using the follow-
ing strategy .

Step a . We first take a maximal (with respect to containment) collection of mutually
disjoint edges of size not exceeding r . The union Cl of this collection meets all edges
of size r or less . Since the collection is of size at most z, there holds IC,I-r •z=g.

Step b. Delete from H all edges of size r or less. Since all remaining edges are of size
larger than r, there exists an element v, belonging to a fraction of at least rln of the
edges. Delete v, and the edges containing it. 1 here exists a vertex v 2 belonging to
a fraction of at least rln of the remaining edges . We delete v2 and the edges incident
with it . We repeat this process (if possible) g times . Let C2 = ( v,, . . ., va ). By the choice
of the v ;s, after removing all edges incident with v,,, . . ., ve the number of edges
remaining is at most

m - (1- rl n)9 < m exp (- rgln) = m exp (- g2lnz) _ Vnz - g,

where the last inequality follows from the assumption that m> e Ynz .

Step c . Choose one vertex from each of the remaining edges, and name C 3 the set of
vertices chosen in this way . Clearly, C= C, U C2 U C3 is a cover and JC J = 3g .

To show the sharpness of the theorem in the ranges of m, n and z mentioned
above, we first show that for every z and m there exists an n and a matrix A of dimen-
sions mXn such that z(A)=z and Z(A)-(1/3)m . For z=1 and m general, let

n= (2) and let A be the nX m matrix whose rows are all possible 0, 1 vectors con-
taining precisely two 1's. Then it is easy to see that z(A)=1 and Z(A)=[m/2].
For general z, take direct sum of z such matrices, duplicating some (at most z)
columns of A to deal with the case that m is not a multiple of z . Then Z-(1/3)m
clearly holds .

To show the sharpness of our inequality in the region m>-en we use a
random construction . G iven m, n, z such that m::-en, define g=g(n, m, z) and
r=glz=V(nlz)ln (mlynz) . We shall show that for a random hypergraph A on n
vertices having m distinct edges each of size r there holds

(8)

	

Pr (z (A) -- 5z) < 1/3

(9)

	

Pr (Z(A) s (1/5) min (n, g)) < lle .

(Pr (x) denotes the probability of the event x). It will follow that there exists a hyper-
graph A with z(A)<5z and Z(A)>(1/5) min (n, g), which is the desired conclu-
sion .
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To show (8), note that the probability of t r-sets to be disjoint is

(n
	 r	

rl (n r2r) . . . (n - (r I)rÍ

	

t 1

	

krJ

	

= ff (1 -(n)"

	

r
h=1

z k I eXp ( nr2 )
7 exp	

~)
.

Hence the probability that a matching of size t can be formed from the m edges ofA
is less than

rtn eXp

	

nr2 ( t ) )

For the proof of (8) it suffices to show that this number is less than 1/3 for t= 5z.
Using the inequality

(ml (me)`

and extracting t-th root, we see that it suffices to show

(em/t) exp [(- r2/n) (t-1)/2] C 1/2 .

But (r2/n)[(t •- 1)/2]=[(5z-1)/2z] In (mlYnz)> 21n (mlhnz), hence we have to show
that (em/5z)(nz/m 2)á 1/2 which follows since m::-en.

We now prove (9) . Let t be a natural number satisfying tf (1/5) min (n, g).
The probability that a given set of t vertices is a cover is :

(nr
tll

	

n-t
)J JI	 (		-

exp -in
r

	

exp C- m exp ( 2rt ) ]

(()~

	

(~
r
)

(in the last inequality we used the fact that tf(1/5)n) . Therefore the proba-
bility that a cover of size t exists is no more than

(10)

	

(t ) exp (-m exp (2rtll

It would suffice to show that this number is less than 1

J

/

,

e . Since this number increases
with t, it suffices to prove the inequality for t=(1/5)g . For this value oft there holds,

2rt/n = ( 1/5) In (m2/nz) ..

Taking natural logarithm of the number in question and using the inequality

In (~,

	

tln(ne/t)
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it remains to verify that t In (m/t)-(m 3zn)Yt5< -1 which, since t In (m/t)> 1,
would follow if we prove 2t In (m/t) < (m3zn) 11S . Write x=mlVnz. The last inequal-

ity can then be written : (2/5) Vin x • In (5xwfn-x) <x3t 5, which clearly holds since
x>-e .

Now we turn to the computational aspect of the theorem . To transform the
proof into an algorithm notice that we do construct a matching and a cover in the
proof. We start by finding a maximal matching among the small sets and then contin-
ue to construct a cover by using the vertices covered by that matching plus a cover
for the large sets, which we constuct greedily. If we know where to switch from the
construction of the matching to the construction of the cover our problem is solved .
The answer to this is implicit in the above proof . Order the edges of the hupergraph
A,, . . ., A. so that their sizes are non decreasing . Define a mathhing (Mi) as follows

j-Y
M,=AY and Mj =A i where A i is disjoint from U Ma and i is the least index

a=Y
with this property .

Let t be the index for which

t IAJ eXp (1 AJ2t/m) -- m < (t+ 1) IA,+YI eXp (JA,112(t+ I)/m) .

The case where no such t exists will be considered later .
Our construction proceeds as follows. We consider the matching MY , . . ., Mt

and a cover which consists of U Mi and the cover for the family {A j lA j (1(U Mi)= of
Y

	

i=Y

which is produced by the greedy algorithm . The same calculation which was used
to prove the upper bound on Z applies now with z replaced by t .

We come back to the case where no such t exists. If already

IAYI eXp (JA, 1 2/n) > m

then we apply the greedy algorithm for a cover immedeately and get the upper bound
for Z valid already with z=1 . At the other extreme, if k 1AkJ exp (k IAk12/n)< m

k

and (MI , . . ., Mk) is a maximal matching then considering U Mi as a cover the upper
Y

bound holds .

4. Further directions for research

Our results are not complete, in that the bounds obtained are not tight in
the range O (hnz )< m< O (n) . It should be pointed out that only a slight modifica-
tion is required to cover the range m>sn rather than m>-en and m< Ynzls rather
than m< e Vnz, but the constants involved depend on e . We have not touched upon
the case that A and the constraint vectors have general itegral elements (rather than
0,1). Interesting questions which suggest themselves in the general case are :

1) Solve the problem which we considered in this article under the assumption that
the elements of A and the constraint vectors are bounded by some constant M.

2) The case of total unimodularity suggests that some positive results could follow
from an assumption that all minors in A have a bounded determinant . Is this true?

19
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3) As an aside of the previous question, the following problem seems very intriguing .
What is the computational complexity of the following problem : given an integral
matrix A and an integer k, decide whether all minors in A have a determinant
not exceeding k in absolute value . 1 he case k=1 is the case of total unimodula-
rity where a polynomial time algorithm was given by Seymour [6] . 1 he general
case seems open .

4) In the course of our investigation the following class of problems came up : We
have found very tight bounds on z, Z if A is a random 0-1 matrix . What can be
said about q then? the answer depends of course on the probability distribution
from which A is drawn . Making the appropriate choices interesting applications
can result from an answer to this question .

5) the common approach to solving integer programming problems is via introduc-
ing cuts. 1 here are inequalities which must hold due to the integrality of the solu-
tion . It would be interesting to investigate the improvement of the approximation
of the rational relaxations as more cuts are introduced.
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