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What is an IRS

Let Γ be a discrete group. Let SubΓ denote the set of subgroups of Γ,
endowed with the product topology inherited from {0, 1}Γ (Chabauty).

SubΓ is compact. Γ acts on SubΓ continuously by conjugation.

An Invariant Random Subgroup (IRS) of Γ is a random subgroup of Γ
whose distribution is invariant under the conjugation action.

Name is coined in [A-Glasner-Virag], but IRS’s have been around in
various forms (Mackey virtual group, measured groupoids,
Nevo-Stück-Zimmer, Bergeron-Gaboriau). Parallel work of Vershik
(TNF actions).

Let Γ act on (X , µ) by p.m.p. maps. Then the random subgroup

StabΓ(x) ≤ Γ (x ∈ X is µ-random)

is an IRS of Γ.

Lemma (A-Glasner-Virag)
Every IRS of Γ arises as the stabilizer for a p.m.p. action of Γ.
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General aspects of invariant random subgroups

Invariant random subgroups:

Tend to behave like normal subgroups, rather than arbitrary subgroups

For locally compact groups, lattices naturally turn to IRS’s

IRS(Γ), the set of IRS’s of Γ, endowed with the weak topology, is
compact. So, every sequence has a convergent subsequence.

Weak convergence in IRS(Γ):

Translates to Benjamini-Schramm convergence of the quotient spaces

Tends to carry over spectral information (spectral measure, L2 Betti
numbers, Plancherel measure, etc)
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How to approximate the universal cover

Let M be a compact space (complex, manifold). Let Γ = π1(M).

Want to approximate the universal cover M̃ with compact covers Mn

of M.

Usual solution: Take a chain (Γn) of normal subgroups of finite index
in Γ with ∩Γn = 1 (*). Let Mn = M̃/Γn.
Problems: Normal. Chain (SL2(Z) mod p). Not a natural
convergence notion (can not merge).

Suggestion: For H ≤ Γ of finite index let µH denote a uniform
random conjugate of H in Γ. Use weak convergence of IRS’s.
A sequence Hn is approximating if µHn → µ1 where µ1 equals 1 a.s.

This convergence notion is equivalent to local sampling convergence:
from a typical place in Mn, and looking at a bounded distance, we
wont be able to distinguish Mn and M̃.

Typically, whatever is continuous for normal chains, is expected to be
continuous for this convergence notion.
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The Lück Approximation Theorem for IRS’s

bk : k-th Betti number over Q; β2k : k-th L
2 Betti number.

Theorem (Lück Approximation)

Let M be a finite complex and let Hn ≤ π1(M) be finite index subgroups
such that µHn → µ1. Then for all k we have

lim
n→∞

bk (Mn)

|π1(M) : Hn |
= β2k (M̃).

Lück: normal chains, Farber: approximating chains, Bergeron-Gaboriau:
any chain. Proof: weak and pointwise convergence of spectral measure.
Gaboriau: L2 Betti numbers of a p.m.p. action only depend on its IRS.

OPEN FOR:

Infinite index IRS’s.
Mod p Betti numbers.
Minimal number of generators (converges on chains, but does the
limit depend on the chain?). Fixed Price Problem of Gaboriau.
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Sofic groups and IRS

A countable group Γ is sofic if it admits a sequence of maps
φn : Γ→ Sym(nk ) such that for every finite subset S ⊆ Γ, φn restricted
to S behaves like an injective group homomorphism with ratio of error
tending to 0 (Gromov, Weiss).

Residually finite and amenable groups are sofic. No non-sofic group is
known as of now.

Lemma
Let Γ = F/N where F is a free group. Then Γ is sofic if and only if there
exist subgroups Hn ≤ F of finite index such that

µHn → δN

where δN is the Dirac measure on N.

Generalized sofic question (Aldous-Lyons): is every IRS in a free group the
weak limit of finite index IRS’s? Also open.
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A theorem on IRS’s..

For a d-regular graph let ρ(G ) denote the spectral radius of the random
walk operator on G . When G is finite, omit trivial eigenvalues.

Theorem (Kesten’s thesis)

Let Γ = 〈S〉 and let N C Γ be a normal subgroup of infinite index. Then
ρ(Cay(Γ, S) = ρ(Cay(Γ/N,S) if and only if N is amenable.

Not true for subgroups. True for IRS’s:

Theorem (A-Glasner-Virag)

Let Γ = 〈S〉 and let H be an IRS of Γ of infinite index. Then
ρ(Cay(Γ,S) = ρ(Sch(Γ/H,S) a.s. if and only if H is amenable a.s.

Exercise: free groups do not admit nontrivial amenable IRS’s. So, if Γ is
free and the IRS H 6= 1, we have ρ(Sch(Γ/H,S) > ρ(Cay(Γ, S).
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.. and an application on a theorem of Serre

Let λG denote the eigenvalue distribution (spectral measure) of G .

Corollary (A-Glasner-Virag)

Let Gn be finite d-regular graphs with |Gn | → ∞. If limλGn is supported
on [−ρ(Td ), ρ(Td )] then

lim
n→∞

#L-cycles in Gn
|Gn |

= 0 (L > 0).

dk (G ): number of primitive, cyclically reduced cycles of length k in G .

Theorem (Serre)

Let (Gn) be finite d-regular graphs, such that γk = limn→∞ dk (Gn)/|Gn |
exists (k ≥ 1). Then λGn weakly converges. If ∑∞

k=1 γk (d − 1)−k/2

converges then limλGn is absolutely continuous on [−ρ(Td ), ρ(Td )].

If Serre’s condition holds, then γk = 0 for all k and limn λGn = λTd .
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The Nevo-Stück-Zimmer theorem in IRS form

Let G be a Lie group. For a lattice Γ let µΓ denote the Haar-random
conjugate of Γ. Let µ1 = 1 and µG = G a.s.

Theorem ([Stück-(Zimmer]-Nevo))
Let G be a higher rank simple real Lie group and let H be an ergodic IRS
in G. Then H = µG , µ1 or µΓ for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)
Let G be a higher rank simple real Lie group, let Γ be a lattice in G and
let N 6= 1 be a normal subgroup of Γ. Then N has finite index in Γ.

Why? The normalizer of N in G is a lattice. Take a random G -conjugate
of N. Its an IRS. Voila. Same way: Γ does not admit nontrivial IRS’s.

Does not work for rank 1 in general (SL2(R)).

Works for semisimple Lie groups. New proofs and extensions are in the
works.
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Other classifications and boundaries

Vershik: Classification of IRS’s for FSym(N)

Bowen + Grigorchuk + Kravchenko: Zoos and shape of the simplex of
IRS’s for large groups, analysis of IRS’s that are invariant under
automorphisms (lamplighter group, Aut(Fn)).

[7Samurai] Let K be any discrete subgroup in G and let H be a nontrivial
IRS in K . Then the limit set of H equals the limit set of K a.s. In
particular, any IRS in G has full limit set.

[Cannizzo-Kaimanovich] Let H be a stationary random subgroup of a free
group F . Then the action of H on the boundary of F is conservative a.s.

[Glasner-Weiss] Topological version of IRS: Uniformly Recurrent Subgroup
(minimal subshift of SubΓ).
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The 7 Samurai

(courtesy of Nicolas Bergeron)Miklós Abért (Rényi Institute) Invariant Random Subgroups March 28, 2014 11 / 18



Big higher rank locally symmetric spaces are also fat

For a Lie group G let X = G/K be its symmetric space.
If Y is connected, complete, locally-X , then Y = Γ\X where Γ ≤ G is
discrete. Let

(Y )<r = {x ∈ Y | injrad(x) < r}
be the r -thin part of Y .

Theorem (7Samurai)
Let G be a higher rank simple Lie group with symmetric space X . Let
Γn ≤ G be lattices and let Xn = Γn\X with vol(Xn)→ ∞. Then for all
r > 0 we have

lim
n→∞

vol((Xn)<r )
vol(Xn)

= 0.

Very much not true in rank 1 in general (lattices with cyclic quotients).

When Γ is a fixed arithmetic lattice and Γn ≤ Γ is a sequence of
congruence subgroups, we have explicit bounds on the size of the thin part
and the typical injrad.
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The IRS behind

Theorem (7Samurai)
Let G be a higher rank simple Lie group and let Γn ≤ G be lattices with
vol(Xn)→ ∞. Then we have limn→∞ µΓn = µ1.

m(π, Γ): multiplicity of π ∈ Ĝ in L2(Γ\G ). d(π): multiplicity in L2(G ).

Theorem (7Samurai Limit Multiplicity)

Let (Γn) be a uniformly discrete sequence of lattices in G such that
limn→∞ µΓn = µ1. Then for all π ∈ Ĝ , we have

m(π, Γn)
vol(Γn\G )

→ d(π).

Also implies weak convergence of Plancherel measures. For chains, these
are due to DeGeorge-Wallach and Delorme. Lots of deep papers. For the
non-uniform case, recent work of Finis, Lapid and Müller.
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Character rigidity

A character of Γ is a conjugacy invariant, positive definite complex
function on Γ with value 1 at the identity. (Thoma, Kirillov).

Theorem (Vershik)

Let H be an IRS of Γ. Then f (g) = P(g ∈ H) is a character of Γ.

Theorem (Bekka)

All nontrivial characters of SLn(Z) (n ≥ 3) come from finite index
subgroups or the center.

Theorem (Peterson-Thom)

No nontrivial characters (and hence IRS’s) for SLn(K ) where K is an
infinite field or the localization of an order in a number field.

Much more on semisimple lattices: Creutz, Creutz-Peterson.
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Open problems: rank 1 simple Lie groups

In rank 1, not every sequence of lattices approximate G .

Question [7Sam + Sarnak] Let G be a rank 1 simple Lie group and
let Γn be a sequence of congruence lattices in G . Then µΓn → µ1.

Theorem (Raimbault)

True for the Bianchi groups ΓD = SL2(Z [
√
−D ]) (D → ∞) (and more).

A lattice Γ ≤ G is Ramanujan, if λ1(Γ\G ) ≥ λ0(G ). Selberg 1/4.

Theorem (A-Virag)
Let G be a simple Lie group and let Γn be a sequence of Ramanujan
lattices in G. Then µΓn → µ1.

Random d-regular graphs converge to the d-regular tree.

Question [Weinberger] Assume G has finitely many non-conjugate
lattices below any given volume. Do random lattices converge to µ1?
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lattices in G. Then µΓn → µ1.

Random d-regular graphs converge to the d-regular tree.

Question [Weinberger] Assume G has finitely many non-conjugate
lattices below any given volume. Do random lattices converge to µ1?
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Open problems

Discrete version [A] Let Γ be a f.g. residually finite group. Let Hn be
a uniform random subgroup of Γ of index ≤ n. Does µHn → µ1 a.s.?

[Gelander] Growth of the minimal number of generators of a lattice is at
most linear in the volume.

Question [A-Gelander-Nikolov] Let G be a higher rank simple Lie
group and let Γn be lattices with vol(Γn)→ ∞. Is it true that

lim
n→∞

d(Γn)
vol(Γn)

= 0?

Theorem (A-Gelander-Nikolov)

True when Γn ≤ Γ where Γ is a right angled lattice in G (NAME!).

What is a character for a Lie (or locally compact) group? Ideally
should be induced from lattices and should be connected to IRS’s.
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Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action,
foliated space with transversal measure. Let the rank of a measured
groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)
The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost
of the limiting profinite action.

Is there a stronger limit notion for arbitrary sequences? (Local-global
limit?)

Let S ⊂ Γ finite and k > 0. Fix a map A : kS → k. For every subgroup
H ≤ Γ, A induces a map AH : kΓ/H → kΓ/H (look at S-neighbors).

[A-Szegedy] The normalized entropy

h(A, Γ,H) = H(AH (k-i.i.d.))/ |Γ : H |
is continuous in IRS convergence. Would imply Lück Approx. mod p.

Miklós Abért (Rényi Institute) Invariant Random Subgroups March 28, 2014 17 / 18



Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action,
foliated space with transversal measure. Let the rank of a measured
groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)
The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost
of the limiting profinite action.

Is there a stronger limit notion for arbitrary sequences? (Local-global
limit?)

Let S ⊂ Γ finite and k > 0. Fix a map A : kS → k. For every subgroup
H ≤ Γ, A induces a map AH : kΓ/H → kΓ/H (look at S-neighbors).

[A-Szegedy] The normalized entropy

h(A, Γ,H) = H(AH (k-i.i.d.))/ |Γ : H |
is continuous in IRS convergence. Would imply Lück Approx. mod p.

Miklós Abért (Rényi Institute) Invariant Random Subgroups March 28, 2014 17 / 18



Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action,
foliated space with transversal measure. Let the rank of a measured
groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)
The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost
of the limiting profinite action.

Is there a stronger limit notion for arbitrary sequences? (Local-global
limit?)

Let S ⊂ Γ finite and k > 0. Fix a map A : kS → k. For every subgroup
H ≤ Γ, A induces a map AH : kΓ/H → kΓ/H (look at S-neighbors).

[A-Szegedy] The normalized entropy

h(A, Γ,H) = H(AH (k-i.i.d.))/ |Γ : H |
is continuous in IRS convergence. Would imply Lück Approx. mod p.

Miklós Abért (Rényi Institute) Invariant Random Subgroups March 28, 2014 17 / 18



Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action,
foliated space with transversal measure. Let the rank of a measured
groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)
The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost
of the limiting profinite action.

Is there a stronger limit notion for arbitrary sequences? (Local-global
limit?)

Let S ⊂ Γ finite and k > 0. Fix a map A : kS → k. For every subgroup
H ≤ Γ, A induces a map AH : kΓ/H → kΓ/H (look at S-neighbors).

[A-Szegedy] The normalized entropy

h(A, Γ,H) = H(AH (k-i.i.d.))/ |Γ : H |
is continuous in IRS convergence. Would imply Lück Approx. mod p.

Miklós Abért (Rényi Institute) Invariant Random Subgroups March 28, 2014 17 / 18



Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action,
foliated space with transversal measure. Let the rank of a measured
groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)
The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost
of the limiting profinite action.

Is there a stronger limit notion for arbitrary sequences? (Local-global
limit?)

Let S ⊂ Γ finite and k > 0. Fix a map A : kS → k. For every subgroup
H ≤ Γ, A induces a map AH : kΓ/H → kΓ/H (look at S-neighbors).

[A-Szegedy] The normalized entropy

h(A, Γ,H) = H(AH (k-i.i.d.))/ |Γ : H |
is continuous in IRS convergence. Would imply Lück Approx. mod p.

Miklós Abért (Rényi Institute) Invariant Random Subgroups March 28, 2014 17 / 18



Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action,
foliated space with transversal measure. Let the rank of a measured
groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)
The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost
of the limiting profinite action.

Is there a stronger limit notion for arbitrary sequences? (Local-global
limit?)

Let S ⊂ Γ finite and k > 0. Fix a map A : kS → k. For every subgroup
H ≤ Γ, A induces a map AH : kΓ/H → kΓ/H (look at S-neighbors).

[A-Szegedy] The normalized entropy

h(A, Γ,H) = H(AH (k-i.i.d.))/ |Γ : H |
is continuous in IRS convergence. Would imply Lück Approx. mod p.

Miklós Abért (Rényi Institute) Invariant Random Subgroups March 28, 2014 17 / 18



Open problems

Covering towers (chains) admit a stronger limit: graphing, profinite action,
foliated space with transversal measure. Let the rank of a measured
groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)
The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost
of the limiting profinite action.

Is there a stronger limit notion for arbitrary sequences? (Local-global
limit?)

Let S ⊂ Γ finite and k > 0. Fix a map A : kS → k. For every subgroup
H ≤ Γ, A induces a map AH : kΓ/H → kΓ/H (look at S-neighbors).

[A-Szegedy] The normalized entropy

h(A, Γ,H) = H(AH (k-i.i.d.))/ |Γ : H |
is continuous in IRS convergence. Would imply Lück Approx. mod p.

Miklós Abért (Rényi Institute) Invariant Random Subgroups March 28, 2014 17 / 18



The end

THANK YOU!!!

Miklós Abért (Rényi Institute) Invariant Random Subgroups March 28, 2014 18 / 18


