Invariant Random Subgroups and their Applications

Miklós Abért

Rényi Institute, Budapest

March 28, 2014

Miklós Abért (Rényi Institute)

Invariant Random Subgroups

March 28, 2014 1 / 18

Let Γ be a discrete group. Let Sub_{Γ} denote the set of subgroups of Γ , endowed with the product topology inherited from $\{0, 1\}^{\Gamma}$ (Chabauty).

Let Γ be a discrete group. Let Sub_{Γ} denote the set of subgroups of Γ , endowed with the product topology inherited from $\{0, 1\}^{\Gamma}$ (Chabauty).

• Sub_{Γ} is compact. Γ acts on Sub_{Γ} continuously by conjugation.

Let Γ be a discrete group. Let Sub_{Γ} denote the set of subgroups of Γ , endowed with the product topology inherited from $\{0, 1\}^{\Gamma}$ (Chabauty).

- Sub_{\Gamma} is compact. Γ acts on Sub_{\Gamma} continuously by conjugation.
- An Invariant Random Subgroup (IRS) of Γ is a random subgroup of Γ whose distribution is invariant under the conjugation action.

Let Γ be a discrete group. Let Sub_{Γ} denote the set of subgroups of Γ , endowed with the product topology inherited from $\{0, 1\}^{\Gamma}$ (Chabauty).

- Sub_{\Gamma} is compact. Γ acts on Sub_{\Gamma} continuously by conjugation.
- An Invariant Random Subgroup (IRS) of Γ is a random subgroup of Γ whose distribution is invariant under the conjugation action.
- Name is coined in [A-Glasner-Virag], but IRS's have been around in various forms (Mackey virtual group, measured groupoids, Nevo-Stück-Zimmer, Bergeron-Gaboriau). Parallel work of Vershik (TNF actions).

Let Γ be a discrete group. Let Sub_{Γ} denote the set of subgroups of Γ , endowed with the product topology inherited from $\{0, 1\}^{\Gamma}$ (Chabauty).

- Sub_{\Gamma} is compact. Γ acts on Sub_{\Gamma} continuously by conjugation.
- An Invariant Random Subgroup (IRS) of Γ is a random subgroup of Γ whose distribution is invariant under the conjugation action.
- Name is coined in [A-Glasner-Virag], but IRS's have been around in various forms (Mackey virtual group, measured groupoids, Nevo-Stück-Zimmer, Bergeron-Gaboriau). Parallel work of Vershik (TNF actions).
- Let Γ act on (X,μ) by p.m.p. maps. Then the random subgroup ${\rm Stab}_{\Gamma}(x)\leq \Gamma \ \ (x\in X \text{ is }\mu\text{-random})$

is an IRS of Γ .

Let Γ be a discrete group. Let Sub_{Γ} denote the set of subgroups of Γ , endowed with the product topology inherited from $\{0, 1\}^{\Gamma}$ (Chabauty).

- Sub_{\Gamma} is compact. Γ acts on Sub_{\Gamma} continuously by conjugation.
- An Invariant Random Subgroup (IRS) of Γ is a random subgroup of Γ whose distribution is invariant under the conjugation action.
- Name is coined in [A-Glasner-Virag], but IRS's have been around in various forms (Mackey virtual group, measured groupoids, Nevo-Stück-Zimmer, Bergeron-Gaboriau). Parallel work of Vershik (TNF actions).
- Let Γ act on (X, μ) by p.m.p. maps. Then the random subgroup Stab_{Γ} $(x) \leq \Gamma$ ($x \in X$ is μ -random)

is an IRS of Γ .

Lemma (A-Glasner-Virag)

Every IRS of Γ arises as the stabilizer for a p.m.p. action of $\Gamma.$

Miklós Abért (Rényi Institute)

Invariant Random Subgroups

March 28, 2014 2 / 18

• Tend to behave like normal subgroups, rather than arbitrary subgroups

 $IRS(\Gamma)$, the set of IRS's of Γ , endowed with the weak topology, is compact. So, every sequence has a convergent subsequence.

- Tend to behave like normal subgroups, rather than arbitrary subgroups
- For locally compact groups, lattices naturally turn to IRS's

 $IRS(\Gamma)$, the set of IRS's of Γ , endowed with the weak topology, is compact. So, every sequence has a convergent subsequence.

- Tend to behave like normal subgroups, rather than arbitrary subgroups
- For locally compact groups, lattices naturally turn to IRS's

 $IRS(\Gamma)$, the set of IRS's of Γ , endowed with the weak topology, is compact. So, every sequence has a convergent subsequence.

- Tend to behave like normal subgroups, rather than arbitrary subgroups
- For locally compact groups, lattices naturally turn to IRS's

 $IRS(\Gamma)$, the set of IRS's of Γ , endowed with the weak topology, is compact. So, every sequence has a convergent subsequence.

Weak convergence in IRS(Γ):

• Translates to Benjamini-Schramm convergence of the quotient spaces

- Tend to behave like normal subgroups, rather than arbitrary subgroups
- For locally compact groups, lattices naturally turn to IRS's

 $IRS(\Gamma)$, the set of IRS's of Γ , endowed with the weak topology, is compact. So, every sequence has a convergent subsequence.

Weak convergence in IRS(Γ):

- Translates to Benjamini-Schramm convergence of the quotient spaces
- Tends to carry over spectral information (spectral measure, L^2 Betti numbers, Plancherel measure, etc)

Let M be a compact space (complex, manifold). Let $\Gamma = \pi_1(M)$.

• Want to approximate the universal cover \widetilde{M} with compact covers M_n of M.

- Want to approximate the universal cover \widetilde{M} with compact covers M_n of M.
- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with ∩Γ_n = 1 (*). Let M_n = M̃/Γ_n.

- Want to approximate the universal cover \widetilde{M} with compact covers M_n of M.
- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with ∩Γ_n = 1 (*). Let M_n = M̃/Γ_n.
- Problems: Normal. Chain (SL₂(Z) mod p). Not a natural convergence notion (can not merge).

- Want to approximate the universal cover \widetilde{M} with compact covers M_n of M.
- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with ∩Γ_n = 1 (*). Let M_n = M̃/Γ_n.
- Problems: Normal. Chain (SL₂(Z) mod p). Not a natural convergence notion (can not merge).
- Suggestion: For $H \leq \Gamma$ of finite index let μ_H denote a uniform random conjugate of H in Γ . Use weak convergence of IRS's.

- Want to approximate the universal cover \widetilde{M} with compact covers M_n of M.
- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with ∩Γ_n = 1 (*). Let M_n = M̃/Γ_n.
- Problems: Normal. Chain (SL₂(Z) mod p). Not a natural convergence notion (can not merge).
- Suggestion: For $H \leq \Gamma$ of finite index let μ_H denote a uniform random conjugate of H in Γ . Use weak convergence of IRS's.
- A sequence H_n is approximating if $\mu_{H_n} \rightarrow \mu_1$ where μ_1 equals 1 a.s.

- Want to approximate the universal cover \widetilde{M} with compact covers M_n of M.
- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with ∩Γ_n = 1 (*). Let M_n = M̃/Γ_n.
- Problems: Normal. Chain (SL₂(Z) mod p). Not a natural convergence notion (can not merge).
- Suggestion: For $H \leq \Gamma$ of finite index let μ_H denote a uniform random conjugate of H in Γ . Use weak convergence of IRS's.
- A sequence H_n is approximating if $\mu_{H_n} \rightarrow \mu_1$ where μ_1 equals 1 a.s.
- This convergence notion is equivalent to local sampling convergence: from a typical place in M_n , and looking at a bounded distance, we wont be able to distinguish M_n and \widetilde{M} .

- Want to approximate the universal cover \widetilde{M} with compact covers M_n of M.
- Usual solution: Take a chain (Γ_n) of normal subgroups of finite index in Γ with ∩Γ_n = 1 (*). Let M_n = M̃/Γ_n.
- Problems: Normal. Chain (SL₂(Z) mod p). Not a natural convergence notion (can not merge).
- Suggestion: For $H \leq \Gamma$ of finite index let μ_H denote a uniform random conjugate of H in Γ . Use weak convergence of IRS's.
- A sequence H_n is approximating if $\mu_{H_n} \rightarrow \mu_1$ where μ_1 equals 1 a.s.
- This convergence notion is equivalent to local sampling convergence: from a typical place in M_n , and looking at a bounded distance, we wont be able to distinguish M_n and \widetilde{M} .
- Typically, whatever is continuous for normal chains, is expected to be continuous for this convergence notion.

 b_k : k-th Betti number over \mathbb{Q} ; β_k^2 : k-th L^2 Betti number.

Theorem (Lück Approximation)

Let M be a finite complex and let $H_n \leq \pi_1(M)$ be finite index subgroups such that $\mu_{H_n} \rightarrow \mu_1$. Then for all k we have

$$\lim_{n\to\infty}\frac{b_k(M_n)}{|\pi_1(M):H_n|}=\beta_k^2(\widetilde{M}).$$

Lück: normal chains, Farber: approximating chains, Bergeron-Gaboriau: any chain. Proof: weak and pointwise convergence of spectral measure. Gaboriau: L^2 Betti numbers of a p.m.p. action only depend on its IRS.

 b_k : k-th Betti number over \mathbb{Q} ; β_k^2 : k-th L^2 Betti number.

Theorem (Lück Approximation)

Let M be a finite complex and let $H_n \leq \pi_1(M)$ be finite index subgroups such that $\mu_{H_n} \rightarrow \mu_1$. Then for all k we have

$$\lim_{n\to\infty}\frac{b_k(M_n)}{|\pi_1(M):H_n|}=\beta_k^2(\widetilde{M}).$$

Lück: normal chains, Farber: approximating chains, Bergeron-Gaboriau: any chain. Proof: weak and pointwise convergence of spectral measure. Gaboriau: L^2 Betti numbers of a p.m.p. action only depend on its IRS. OPEN FOR:

• Infinite index IRS's.

 b_k : k-th Betti number over \mathbb{Q} ; β_k^2 : k-th L^2 Betti number.

Theorem (Lück Approximation)

Let M be a finite complex and let $H_n \leq \pi_1(M)$ be finite index subgroups such that $\mu_{H_n} \rightarrow \mu_1$. Then for all k we have

$$\lim_{n\to\infty}\frac{b_k(M_n)}{|\pi_1(M):H_n|}=\beta_k^2(\widetilde{M}).$$

Lück: normal chains, Farber: approximating chains, Bergeron-Gaboriau: any chain. Proof: weak and pointwise convergence of spectral measure. Gaboriau: L^2 Betti numbers of a p.m.p. action only depend on its IRS. OPEN FOR:

- Infinite index IRS's.
- Mod *p* Betti numbers.

 b_k : k-th Betti number over \mathbb{Q} ; β_k^2 : k-th L^2 Betti number.

Theorem (Lück Approximation)

Let M be a finite complex and let $H_n \leq \pi_1(M)$ be finite index subgroups such that $\mu_{H_n} \rightarrow \mu_1$. Then for all k we have

$$\lim_{n\to\infty}\frac{b_k(M_n)}{|\pi_1(M):H_n|}=\beta_k^2(\widetilde{M}).$$

Lück: normal chains, Farber: approximating chains, Bergeron-Gaboriau: any chain. Proof: weak and pointwise convergence of spectral measure. Gaboriau: L^2 Betti numbers of a p.m.p. action only depend on its IRS. OPEN FOR:

- Infinite index IRS's.
- Mod *p* Betti numbers.
- Minimal number of generators (converges on chains, but does the limit depend on the chain?). Fixed Price Problem of Gaboriau.

Miklós Abért (Rényi Institute)

Invariant Random Subgroups

March 28, 2014 5 / 18

A countable group Γ is *sofic* if it admits a sequence of maps $\phi_n : \Gamma \to \operatorname{Sym}(n_k)$ such that for every finite subset $S \subseteq \Gamma$, ϕ_n restricted to S behaves like an injective group homomorphism with ratio of error tending to 0 (Gromov, Weiss).

A countable group Γ is *sofic* if it admits a sequence of maps $\phi_n : \Gamma \to \operatorname{Sym}(n_k)$ such that for every finite subset $S \subseteq \Gamma$, ϕ_n restricted to S behaves like an injective group homomorphism with ratio of error tending to 0 (Gromov, Weiss).

Residually finite and amenable groups are sofic. No non-sofic group is known as of now.

A countable group Γ is *sofic* if it admits a sequence of maps $\phi_n : \Gamma \to \operatorname{Sym}(n_k)$ such that for every finite subset $S \subseteq \Gamma$, ϕ_n restricted to S behaves like an injective group homomorphism with ratio of error tending to 0 (Gromov, Weiss).

Residually finite and amenable groups are sofic. No non-sofic group is known as of now.

Lemma

Let $\Gamma = F / N$ where F is a free group. Then Γ is sofic if and only if there exist subgroups $H_n \leq F$ of finite index such that

$$\mu_{H_n} \to \delta_N$$

where δ_N is the Dirac measure on N.

A countable group Γ is *sofic* if it admits a sequence of maps $\phi_n : \Gamma \to \operatorname{Sym}(n_k)$ such that for every finite subset $S \subseteq \Gamma$, ϕ_n restricted to S behaves like an injective group homomorphism with ratio of error tending to 0 (Gromov, Weiss).

Residually finite and amenable groups are sofic. No non-sofic group is known as of now.

Lemma

Let $\Gamma = F / N$ where F is a free group. Then Γ is sofic if and only if there exist subgroups $H_n \leq F$ of finite index such that

$$\mu_{H_n} \to \delta_N$$

where δ_N is the Dirac measure on N.

Generalized sofic question (Aldous-Lyons): is every IRS in a free group the weak limit of finite index IRS's? Also open.

Miklós Abért (Rényi Institute)

Theorem (Kesten's thesis)

Let $\Gamma = \langle S \rangle$ and let $N \lhd \Gamma$ be a normal subgroup of infinite index. Then $\rho(\operatorname{Cay}(\Gamma, S) = \rho(\operatorname{Cay}(\Gamma/N, S) \text{ if and only if } N \text{ is amenable.})$

Theorem (Kesten's thesis)

Let $\Gamma = \langle S \rangle$ and let $N \lhd \Gamma$ be a normal subgroup of infinite index. Then $\rho(\operatorname{Cay}(\Gamma, S) = \rho(\operatorname{Cay}(\Gamma/N, S) \text{ if and only if } N \text{ is amenable.})$

Not true for subgroups. True for IRS's:

Theorem (Kesten's thesis)

Let $\Gamma = \langle S \rangle$ and let $N \lhd \Gamma$ be a normal subgroup of infinite index. Then $\rho(\operatorname{Cay}(\Gamma, S) = \rho(\operatorname{Cay}(\Gamma/N, S) \text{ if and only if } N \text{ is amenable.})$

Not true for subgroups. True for IRS's:

Theorem (A-Glasner-Virag)

Let $\Gamma = \langle S \rangle$ and let H be an IRS of Γ of infinite index. Then $\rho(\operatorname{Cay}(\Gamma, S) = \rho(\operatorname{Sch}(\Gamma/H, S) \text{ a.s. if and only if H is amenable a.s.})$

イロト イヨト イヨト

Theorem (Kesten's thesis)

Let $\Gamma = \langle S \rangle$ and let $N \lhd \Gamma$ be a normal subgroup of infinite index. Then $\rho(\operatorname{Cay}(\Gamma, S) = \rho(\operatorname{Cay}(\Gamma/N, S) \text{ if and only if } N \text{ is amenable.})$

Not true for subgroups. True for IRS's:

Theorem (A-Glasner-Virag)

Let $\Gamma = \langle S \rangle$ and let H be an IRS of Γ of infinite index. Then $\rho(\operatorname{Cay}(\Gamma, S) = \rho(\operatorname{Sch}(\Gamma/H, S) \text{ a.s. if and only if H is amenable a.s.})$

Exercise: free groups do not admit nontrivial amenable IRS's. So, if Γ is free and the IRS $H \neq 1$, we have $\rho(\operatorname{Sch}(\Gamma/H, S) > \rho(\operatorname{Cay}(\Gamma, S))$.

イロト 不得下 イヨト イヨト 二日

Theorem (Kesten's thesis)

Let $\Gamma = \langle S \rangle$ and let $N \lhd \Gamma$ be a normal subgroup of infinite index. Then $\rho(\operatorname{Cay}(\Gamma, S) = \rho(\operatorname{Cay}(\Gamma/N, S) \text{ if and only if } N \text{ is amenable.})$

Not true for subgroups. True for IRS's:

Theorem (A-Glasner-Virag)

Let $\Gamma = \langle S \rangle$ and let H be an IRS of Γ of infinite index. Then $\rho(\operatorname{Cay}(\Gamma, S) = \rho(\operatorname{Sch}(\Gamma/H, S) \text{ a.s. if and only if H is amenable a.s.})$

Exercise: free groups do not admit nontrivial amenable IRS's. So, if Γ is free and the IRS $H \neq 1$, we have $\rho(\operatorname{Sch}(\Gamma/H, S) > \rho(\operatorname{Cay}(\Gamma, S))$.

イロト 不得下 イヨト イヨト 二日

.. and an application on a theorem of Serre

Let λ_G denote the eigenvalue distribution (spectral measure) of G.

.. and an application on a theorem of Serre

Let λ_G denote the eigenvalue distribution (spectral measure) of G.

Corollary (A-Glasner-Virag)

Let G_n be finite d-regular graphs with $|G_n| \to \infty$. If $\lim \lambda_{G_n}$ is supported on $[-\rho(T_d), \rho(T_d)]$ then

$$\lim_{n\to\infty}\frac{\#L\text{-cycles in }G_n}{|G_n|}=0 \quad (L>0).$$

.. and an application on a theorem of Serre

Let λ_G denote the eigenvalue distribution (spectral measure) of G.

Corollary (A-Glasner-Virag)

Let G_n be finite d-regular graphs with $|G_n| \to \infty$. If $\lim \lambda_{G_n}$ is supported on $[-\rho(T_d), \rho(T_d)]$ then

$$\lim_{n\to\infty}\frac{\#L\text{-cycles in }G_n}{|G_n|}=0 \quad (L>0).$$

 $d_k(G)$: number of primitive, cyclically reduced cycles of length k in G.

Theorem (Serre)

Let (G_n) be finite *d*-regular graphs, such that $\gamma_k = \lim_{n \to \infty} d_k(G_n)/|G_n|$ exists $(k \ge 1)$. Then λ_{G_n} weakly converges. If $\sum_{k=1}^{\infty} \gamma_k (d-1)^{-k/2}$ converges then $\lim \lambda_{G_n}$ is absolutely continuous on $[-\rho(T_d), \rho(T_d)]$.

<ロト <回ト < 回ト < 回ト < 回ト = 三日
.. and an application on a theorem of Serre

Let λ_G denote the eigenvalue distribution (spectral measure) of G.

Corollary (A-Glasner-Virag)

Let G_n be finite d-regular graphs with $|G_n| \to \infty$. If $\lim \lambda_{G_n}$ is supported on $[-\rho(T_d), \rho(T_d)]$ then

$$\lim_{n\to\infty}\frac{\#L\text{-cycles in }G_n}{|G_n|}=0 \quad (L>0).$$

 $d_k(G)$: number of primitive, cyclically reduced cycles of length k in G.

Theorem (Serre)

Let (G_n) be finite *d*-regular graphs, such that $\gamma_k = \lim_{n \to \infty} d_k(G_n)/|G_n|$ exists $(k \ge 1)$. Then λ_{G_n} weakly converges. If $\sum_{k=1}^{\infty} \gamma_k (d-1)^{-k/2}$ converges then $\lim \lambda_{G_n}$ is absolutely continuous on $[-\rho(T_d), \rho(T_d)]$.

If Serre's condition holds, then $\gamma_k = 0$ for all k and $\lim_n \lambda_{G_n^+} = \lambda_{T_d}$.

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ . Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ . Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G$, μ_1 or μ_{Γ} for some lattice Γ of G.

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ . Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G$, μ_1 or μ_{Γ} for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ . Then N has finite index in Γ .

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ . Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G$, μ_1 or μ_{Γ} for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ . Then N has finite index in Γ .

Why?

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ . Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G$, μ_1 or μ_{Γ} for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ . Then N has finite index in Γ .

Why? The normalizer of N in G is a lattice.

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ . Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G$, μ_1 or μ_{Γ} for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ . Then N has finite index in Γ .

Why? The normalizer of N in G is a lattice. Take a random G-conjugate of N.

イロト イ理ト イヨト イヨト

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ . Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G$, μ_1 or μ_{Γ} for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ . Then N has finite index in Γ .

Why? The normalizer of N in G is a lattice. Take a random G-conjugate of N. Its an IRS.

・ロト ・聞ト ・ ヨト ・ ヨト

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ . Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G$, μ_1 or μ_{Γ} for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ . Then N has finite index in Γ .

Why? The normalizer of N in G is a lattice. Take a random G-conjugate of N. Its an IRS. Voila.

・ロト ・聞ト ・ ヨト ・ ヨト

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ . Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G$, μ_1 or μ_{Γ} for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ . Then N has finite index in Γ .

Why? The normalizer of N in G is a lattice. Take a random G-conjugate of N. Its an IRS. Voila. Same way: Γ does not admit nontrivial IRS's.

・ロト ・聞ト ・ ヨト ・ ヨト

Let G be a Lie group. For a lattice Γ let μ_{Γ} denote the Haar-random conjugate of Γ . Let $\mu_1 = 1$ and $\mu_G = G$ a.s.

Theorem ([Stück-(Zimmer]-Nevo))

Let G be a higher rank simple real Lie group and let H be an ergodic IRS in G. Then $H = \mu_G$, μ_1 or μ_{Γ} for some lattice Γ of G.

Corollary (Margulis Normal Subgroup Theorem)

Let G be a higher rank simple real Lie group, let Γ be a lattice in G and let $N \neq 1$ be a normal subgroup of Γ . Then N has finite index in Γ .

Why? The normalizer of N in G is a lattice. Take a random G-conjugate of N. Its an IRS. Voila. Same way: Γ does not admit nontrivial IRS's.

Does not work for rank 1 in general $(SL_2(R))$.

Works for semisimple Lie groups. New proofs and extensions are in the works.

Vershik: Classification of IRS's for $FSym(\mathbb{N})$

Bowen + Grigorchuk + Kravchenko: Zoos and shape of the simplex of IRS's for large groups, analysis of IRS's that are invariant under automorphisms (lamplighter group, $\operatorname{Aut}(F_n)$).

[7Samurai] Let K be any discrete subgroup in G and let H be a nontrivial IRS in K. Then the limit set of H equals the limit set of K a.s. In particular, any IRS in G has full limit set.

[Cannizzo-Kaimanovich] Let H be a stationary random subgroup of a free group F. Then the action of H on the boundary of F is conservative a.s.

[Glasner-Weiss] Topological version of IRS: Uniformly Recurrent Subgroup (minimal subshift of Sub_{Γ}).

イロト 人間ト イヨト イヨト

The 7 Samurai

Miklós Abért (Rényi Institute)

Invariant Random Subgroups

March 28, 2014 11 / 18

For a Lie group G let X = G/K be its symmetric space. If Y is connected, complete, locally-X, then $Y = \Gamma \setminus X$ where $\Gamma \leq G$ is discrete. Let

$$(Y)_{< r} = \{x \in Y \mid injrad(x) < r\}$$

be the r-thin part of Y.

For a Lie group G let X = G/K be its symmetric space. If Y is connected, complete, locally-X, then $Y = \Gamma \setminus X$ where $\Gamma \leq G$ is discrete. Let

$$(Y)_{< r} = \{x \in Y \mid \text{injrad}(x) < r\}$$

be the r-thin part of Y.

Theorem (7Samurai)

Let G be a higher rank simple Lie group with symmetric space X. Let $\Gamma_n \leq G$ be lattices and let $X_n = \Gamma_n \setminus X$ with $\operatorname{vol}(X_n) \to \infty$. Then for all r > 0 we have

$$\lim_{n\to\infty}\frac{\operatorname{vol}((X_n)< r)}{\operatorname{vol}(X_n)}=0.$$

For a Lie group G let X = G/K be its symmetric space. If Y is connected, complete, locally-X, then $Y = \Gamma \setminus X$ where $\Gamma \leq G$ is discrete. Let

$$(Y)_{< r} = \{x \in Y \mid \text{injrad}(x) < r\}$$

be the r-thin part of Y.

Theorem (7Samurai)

Let G be a higher rank simple Lie group with symmetric space X. Let $\Gamma_n \leq G$ be lattices and let $X_n = \Gamma_n \setminus X$ with $\operatorname{vol}(X_n) \to \infty$. Then for all r > 0 we have

$$\lim_{n\to\infty}\frac{\operatorname{vol}((X_n)_{< r})}{\operatorname{vol}(X_n)}=0.$$

Very much not true in rank 1 in general (lattices with cyclic quotients).

For a Lie group G let X = G/K be its symmetric space. If Y is connected, complete, locally-X, then $Y = \Gamma \setminus X$ where $\Gamma \leq G$ is discrete. Let

$$(Y)_{< r} = \{x \in Y \mid \text{injrad}(x) < r\}$$

be the r-thin part of Y.

Theorem (7Samurai)

Let G be a higher rank simple Lie group with symmetric space X. Let $\Gamma_n \leq G$ be lattices and let $X_n = \Gamma_n \setminus X$ with $\operatorname{vol}(X_n) \to \infty$. Then for all r > 0 we have

$$\lim_{n\to\infty}\frac{\operatorname{vol}((X_n)< r)}{\operatorname{vol}(X_n)}=0.$$

Very much not true in rank 1 in general (lattices with cyclic quotients).

When Γ is a fixed arithmetic lattice and $\Gamma_n \leq \Gamma$ is a sequence of congruence subgroups, we have explicit bounds on the size of the thin part and the typical injrad.

Miklós Abért (Rényi Institute)

The IRS behind

Theorem (7Samurai)

Let G be a higher rank simple Lie group and let $\Gamma_n \leq G$ be lattices with $\operatorname{vol}(X_n) \to \infty$. Then we have $\lim_{n\to\infty} \mu_{\Gamma_n} = \mu_1$.

 $m(\pi, \Gamma)$: multiplicity of $\pi \in \widehat{G}$ in $L^2(\Gamma \setminus G)$. $d(\pi)$: multiplicity in $L^2(G)$.

Theorem (7Samurai Limit Multiplicity)

Let (Γ_n) be a uniformly discrete sequence of lattices in G such that $\lim_{n\to\infty} \mu_{\Gamma_n} = \mu_1$. Then for all $\pi \in \widehat{G}$, we have

$$\frac{m(\pi,\Gamma_n)}{\operatorname{vol}(\Gamma_n\backslash G)}\to d(\pi).$$

Also implies weak convergence of Plancherel measures. For chains, these are due to DeGeorge-Wallach and Delorme. Lots of deep papers. For the non-uniform case, recent work of Finis, Lapid and Müller.

Miklós Abért (Rényi Institute)

A character of Γ is a conjugacy invariant, positive definite complex function on Γ with value 1 at the identity. (Thoma, Kirillov).

A character of Γ is a conjugacy invariant, positive definite complex function on Γ with value 1 at the identity. (Thoma, Kirillov).

Theorem (Vershik)

Let H be an IRS of Γ . Then $f(g) = \mathcal{P}(g \in H)$ is a character of Γ .

A character of Γ is a conjugacy invariant, positive definite complex function on Γ with value 1 at the identity. (Thoma, Kirillov).

Theorem (Vershik)

Let H be an IRS of Γ . Then $f(g) = \mathcal{P}(g \in H)$ is a character of Γ .

Theorem (Bekka)

All nontrivial characters of $SL_n(\mathbb{Z})$ $(n \ge 3)$ come from finite index subgroups or the center.

A character of Γ is a conjugacy invariant, positive definite complex function on Γ with value 1 at the identity. (Thoma, Kirillov).

Theorem (Vershik)

Let H be an IRS of Γ . Then $f(g) = \mathcal{P}(g \in H)$ is a character of Γ .

Theorem (Bekka)

All nontrivial characters of $SL_n(\mathbb{Z})$ $(n \ge 3)$ come from finite index subgroups or the center.

Theorem (Peterson-Thom)

No nontrivial characters (and hence IRS's) for $SL_n(K)$ where K is an infinite field or the localization of an order in a number field.

Much more on semisimple lattices: Creutz, Creutz-Peterson.

・ロト ・聞ト ・ ヨト

In rank 1, not every sequence of lattices approximate G.

 Question [7Sam + Sarnak] Let G be a rank 1 simple Lie group and let Γ_n be a sequence of congruence lattices in G. Then μ_{Γn} → μ₁.

In rank 1, not every sequence of lattices approximate G.

 Question [7Sam + Sarnak] Let G be a rank 1 simple Lie group and let Γ_n be a sequence of congruence lattices in G. Then μ_{Γ_n} → μ₁.

Theorem (Raimbault)

True for the Bianchi groups $\Gamma_D = \operatorname{SL}_2(Z[\sqrt{-D}]) \ (D \to \infty)$ (and more).

In rank 1, not every sequence of lattices approximate G.

 Question [7Sam + Sarnak] Let G be a rank 1 simple Lie group and let Γ_n be a sequence of congruence lattices in G. Then μ_{Γa} → μ₁.

Theorem (Raimbault)

True for the Bianchi groups $\Gamma_D = SL_2(Z[\sqrt{-D}]) \ (D \to \infty)$ (and more).

• A lattice $\Gamma \leq G$ is Ramanujan, if $\lambda_1(\Gamma \setminus G) \geq \lambda_0(G)$. Selberg 1/4.

In rank 1, not every sequence of lattices approximate G.

 Question [7Sam + Sarnak] Let G be a rank 1 simple Lie group and let Γ_n be a sequence of congruence lattices in G. Then μ_{Γ_n} → μ₁.

Theorem (Raimbault)

True for the Bianchi groups $\Gamma_D = SL_2(Z[\sqrt{-D}]) \ (D \to \infty)$ (and more).

• A lattice $\Gamma \leq G$ is Ramanujan, if $\lambda_1(\Gamma \setminus G) \geq \lambda_0(G)$. Selberg 1/4.

Theorem (A-Virag)

Let G be a simple Lie group and let Γ_n be a sequence of Ramanujan lattices in G. Then $\mu_{\Gamma_n} \rightarrow \mu_1$.

In rank 1, not every sequence of lattices approximate G.

 Question [7Sam + Sarnak] Let G be a rank 1 simple Lie group and let Γ_n be a sequence of congruence lattices in G. Then μ_{Γ_n} → μ₁.

Theorem (Raimbault)

True for the Bianchi groups $\Gamma_D = SL_2(Z[\sqrt{-D}]) \ (D \to \infty)$ (and more).

• A lattice $\Gamma \leq G$ is Ramanujan, if $\lambda_1(\Gamma \setminus G) \geq \lambda_0(G)$. Selberg 1/4.

Theorem (A-Virag)

Let G be a simple Lie group and let Γ_n be a sequence of Ramanujan lattices in G. Then $\mu_{\Gamma_n} \rightarrow \mu_1$.

• Random *d*-regular graphs converge to the *d*-regular tree.

イロト 不得下 イヨト イヨト

In rank 1, not every sequence of lattices approximate G.

 Question [7Sam + Sarnak] Let G be a rank 1 simple Lie group and let Γ_n be a sequence of congruence lattices in G. Then μ_{Γ_n} → μ₁.

Theorem (Raimbault)

True for the Bianchi groups $\Gamma_D = SL_2(Z[\sqrt{-D}]) \ (D \to \infty)$ (and more).

• A lattice $\Gamma \leq G$ is *Ramanujan*, if $\lambda_1(\Gamma \setminus G) \geq \lambda_0(G)$. Selberg 1/4.

Theorem (A-Virag)

Let G be a simple Lie group and let Γ_n be a sequence of Ramanujan lattices in G. Then $\mu_{\Gamma_n} \rightarrow \mu_1$.

- Random *d*-regular graphs converge to the *d*-regular tree.
- Question [Weinberger] Assume G has finitely many non-conjugate lattices below any given volume. Do random lattices converge to μ₁?

 Discrete version [A] Let Γ be a f.g. residually finite group. Let H_n be a uniform random subgroup of Γ of index ≤ n. Does μ_{H_n} → μ₁ a.s.?

 Discrete version [A] Let Γ be a f.g. residually finite group. Let H_n be a uniform random subgroup of Γ of index ≤ n. Does μ_{H_n} → μ₁ a.s.?

 Discrete version [A] Let Γ be a f.g. residually finite group. Let H_n be a uniform random subgroup of Γ of index ≤ n. Does μ_{H_n} → μ₁ a.s.?

[Gelander] Growth of the minimal number of generators of a lattice is at most linear in the volume.

• Question [A-Gelander-Nikolov] Let G be a higher rank simple Lie group and let Γ_n be lattices with $vol(\Gamma_n) \rightarrow \infty$. Is it true that

$$\lim_{n\to\infty}\frac{d(\Gamma_n)}{\operatorname{vol}(\Gamma_n)}=0?$$

 Discrete version [A] Let Γ be a f.g. residually finite group. Let H_n be a uniform random subgroup of Γ of index ≤ n. Does μ_{H_n} → μ₁ a.s.?

[Gelander] Growth of the minimal number of generators of a lattice is at most linear in the volume.

• Question [A-Gelander-Nikolov] Let G be a higher rank simple Lie group and let Γ_n be lattices with $vol(\Gamma_n) \rightarrow \infty$. Is it true that

$$\lim_{n\to\infty}\frac{d(\Gamma_n)}{\operatorname{vol}(\Gamma_n)}=0?$$

Theorem (A-Gelander-Nikolov)

True when $\Gamma_n \leq \Gamma$ where Γ is a right angled lattice in G (NAME!).

イロト 不得下 イヨト イヨト

 Discrete version [A] Let Γ be a f.g. residually finite group. Let H_n be a uniform random subgroup of Γ of index ≤ n. Does μ_{H_n} → μ₁ a.s.?

[Gelander] Growth of the minimal number of generators of a lattice is at most linear in the volume.

• Question [A-Gelander-Nikolov] Let G be a higher rank simple Lie group and let Γ_n be lattices with $vol(\Gamma_n) \rightarrow \infty$. Is it true that

$$\lim_{n\to\infty}\frac{d(\Gamma_n)}{\operatorname{vol}(\Gamma_n)}=0?$$

Theorem (A-Gelander-Nikolov)

True when $\Gamma_n \leq \Gamma$ where Γ is a right angled lattice in G (NAME!).

 What is a character for a Lie (or locally compact) group? Ideally should be induced from lattices and should be connected to IRS's.

Miklós Abért (Rényi Institute)

Invariant Random Subgroups

Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the *rank* of a measured groupoid be the infimum of measures of its generating subsets.

Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the *rank* of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)

The rank is continuous for towers of measured groupoids.

Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the *rank* of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)

The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost of the limiting profinite action.
Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the *rank* of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)

The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost of the limiting profinite action.

• Is there a stronger limit notion for arbitrary sequences? (Local-global limit?)

Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the *rank* of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)

The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost of the limiting profinite action.

• Is there a stronger limit notion for arbitrary sequences? (Local-global limit?)

Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the *rank* of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)

The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost of the limiting profinite action.

• Is there a stronger limit notion for arbitrary sequences? (Local-global limit?)

Let $S \subset \Gamma$ finite and k > 0. Fix a map $A : k^S \to k$. For every subgroup $H \leq \Gamma$, A induces a map $A_H : k^{\Gamma/H} \to k^{\Gamma/H}$ (look at S-neighbors).

Covering towers (chains) admit a stronger limit: graphing, profinite action, foliated space with transversal measure. Let the *rank* of a measured groupoid be the infimum of measures of its generating subsets.

Theorem (A-Nikolov)

The rank is continuous for towers of measured groupoids.

In particular, the rank gradient of an approximating chain equals the cost of the limiting profinite action.

• Is there a stronger limit notion for arbitrary sequences? (Local-global limit?)

Let $S \subset \Gamma$ finite and k > 0. Fix a map $A : k^S \to k$. For every subgroup $H \leq \Gamma$, A induces a map $A_H : k^{\Gamma/H} \to k^{\Gamma/H}$ (look at S-neighbors).

• [A-Szegedy] The normalized entropy

$$h(A, \Gamma, H) = H(A_H(k-i.i.d.)) / |\Gamma:H|$$

is continuous in IRS convergence. Would imply Lück Approx. mod p.

THANK YOU!!!

Miklós Abért (Rényi Institute)

Invariant Random Subgroups

March 28, 2014 18 / 18

* ロ > * 個 > * 注 > * 注 >

æ