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Let d (m) denote the number of divisors of the integer m. Chowla has conjectured 
that the integers for which d (m-f- 1) > d (m) have density Q. In this paper I prove 
and generalize this copjecture. I prove in $1 a corresponding result for a general 
class of functions f (m), and in $2 the result for d (m) which is not included among 
the f(m). I employ the method used in my paper: “On the density of some 
sequences of numbers.” * 

1. The functionsf (m) and 4 (m) are called additive and multiplicative respec- 
tively if they are defined for non-negative integers m, and if, for (ml, m,) = 1, 

f (ml%) =f @I) +fh4), 

$ (ml%) = 4 (ml) 4 (mz)* 

We suppose throughout that f(m) 2 0, $ (m) > 1. 
If 4 (m) is multiplicative, log 4 (m) is evidently additive, so that it will s&ice 

to consider additive functions only. 
We denote by C (f, n) th e number of integers m < n for whichf(m + 1) &f(m), 

and by X (f, n) the number for which f(m + 1) <f(m), We suppose throughout 
that n is a sufficiently large integer and that the c’s are absolute constants. 

First we prove the following 

THEOREM: Let the additive function f (m) 2 0 satisfy the following condition: 

f(P) z p converges when the summation is extended to all primes p. Then 

Em Q(fA=& - I 
It-z-a, n 

Em fi(f,n) 1 -= 2. 
tk+oo n 

We prove that lim G (A 4 -= 1, and that the number of integers m<n for 
12+m fl If, n) 

whichf(m+l)=f( ) m is o (n), i.e.. the number of integers belonging both to the 
set C and to the set S is o (n).. 

* JournalLondon Math.Soc. 10(1935),120-125. 
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The method will be more intelligible if we consider first the special case in 
whichf(pa)=f(p) f or any integral exponent cc, so that 

f(m) =p2pP). 

Consider also the function fk (m) = z’J(p), 

P<Pk 

where pk denotes the &h prime. 

We show first that G(fk, n) 
n! x(fk,n) = l. 

Let us denote by a,, u2, . . . the square-free integers whose prime factors are 

all less than or equal to pk, and by a (m) the greatest ai contained in 7n. Evidently 

fk Cm) =f [a @)I- 
By $ (n, a,, uj) we denote the number of integers m < n such that a (m) = ai, 

a(m+l)=aj. Evidently$(n,ai,ai)=Oif(a,,ai)#l. 
We obtain # (n, a,, uj) by taking all integers m < n for which ai 1 m but ~1 m 

if~~~~unless~~a~;anda~~(m+1)but~~(m~1)ifp~~,,unless~~a~. 
With these conditions we hnd by the sieve of Eratosthenes and omission of 

the square brackets 

&*iL k -5) 
-22k<$v% cci, Uj,& rI 

i jP<Pk 
PSWI ptatai 

and similarly I (3) 

-!- n (1-i) 
WjPGPk 

-22k<$(n, 9, a,)<& n 

Pttllq 
< jp<pk(1-:)+22k'J 

PtLi 

From these (4) 

Since 

and similarly 

we have, by (4), 

We now prove that, for every E > 0, a k exists so great that, if n > n (E), 

IQ(f,n)-G(f~,n)I<m (5) 
and similarly I fl(f,n)-fi(fk? n) I <a?/* (6) 

G (f> rf~) 
From these jlilit x = 1 follows immediately, 

We require two lemmas. 
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LEMMA 1. For every E we can Jind a number 6 such that, if v is the number of 
integers m < n for which 1 fk (m + 1) -fk (in) I< 6, then v < &n for lc > lc (E). 

We have evidently 

We now split the sum {7) into two parts x1 and x2, x1 containing those ai’s 

and aj’s for which n 
Plw4 
P#2 

< e--l/@ and x2 all the other ai’s and aj’s . 

First we evaluate x1. 
x1 is evidently less than or equal to the number p of integers m < n for which 

s(m)= p,?ni[?In+l) (l - I) < e-l’Eaa 

Consider now the producO fi g (m) < e-p G 1 . The factor 1 - 2 for given p occurs 
W&=1 2s 

at most [z]+r+] p 6 2” times and so (really by Legendre’s argument) 

1 e-p11’2 > - 
7L’ 

Cl 

hence &</.<<%logc,. 

We now split x2 into two parts x; and xg, where xh contains only those ai’s 
and aj’s for which r~, aj > p$ea. 

CL is less than or equal to the number p of the integers m < n for which 

d(m)=a(m)a(m+l)>#. 

By Legendre’s argument, we have 
n 

n d(m)< n ~2~~~=exp 
m=l P<Pk 

since x l%P ~ < C$ logp, . 
P<Pk P 

Hence pp” < py, 

thus xi < p < 2c,nG. 

Finally, we have to evaluate I;:. 
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For the ai's and aj’s occurring in xi, we have, from JJ 
PGDk 

omitting the terms for which fl 
Plwi 
Pi;2 

,gk (l-J<- 
(1% Pl2 - 

Hence from (3) since a,, aj can each at most take 2k values, 

The dash in the summation formulae means that the summation runs only over 

the a,‘s and aj’s for which aXaj < $$E’ and JJ > e--lie’. 
Pl%aj 

PGPk 

We now prove that 
C’ C’ & < c5~2e-i/C2 (logp,)2. 
ai q i j 

If(q)-f(=dl<S 

(8) 

First we estimate the sum Ix’ 1 for fixed ai. 
If(uikfw~Saj 

We obtain in exactly the same way as in Lemma 1 of my paper* “On the 
density of some sequences of numbers ” that for 2 >c6 the number of integers 
m 6 I for which ( f(m) -f (aJ 1 < 6 is less than @e--l@ 1. Hence 

< 2 log c6 + &e-1/Ez ~ 
2 

<, c7 c2e--l/@ logpk. 

Since 5 ii = n 
P<Pk ( 1 

1 + 5 < es logp, , (8) is proved. From (S), we have 

CC c cg E2n. 

And finally v=I;,-t~~+~~<~2n(logc,$2c2+c,)<g~~n. 

LEMMA 2. There are at most &n integers m<n for which at least one of the 
inequalities 

f(m>-fk(m)>& f(m+l)--fk(mfl)>s 

holds for sujiciently large k = k (E). 

* The lemma asserts that for every E we can find a S such that the number of integers 
m < ti for which c <f(m) < c f 8 is less than ECG. See also my paper “On the density of some 
sequences of numbers, II”, which will appear shortly in the Journal of the London Math. Sot. 
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For clearly 

PAUL ERD% 

since xfo 
P P 

converges. Hence the lemma is proved. 

We proceed to prove (5) and (6). It will be sufficient to prove that the 
number of integers m B n, for which fk (m + 1) -fk (m) is not of the same sign as 
f(m -t 1) -f(m), is less than in. 

We split these integers into two classes. In the first class are those for which 
Ifk(mfl)-fk(m) 1 <S. B y L emma 1, the number of these is less than at-n. For 
the integers of the second class 1 fi, (m-t 1) -fk (m) 1 > 6. For these, evidently one 
of theinequalitiesf(m) -fk (m) > 8, f(m + 1) -fk (m + 1) > 6 holds. Thus by Lemma 
2 their number is also less than +z, and so (5) is proved. 

We now have to show that there are only o(n) integers m 6% for which 

f(m) =fb+ 1). 
The argument is exact’ly the same as the one above. We split the integers 

m < n with f (m) = f (m -t 1) into two classes, putting into the first those for which 
Ifdm+kfdm)l~~. B y L emma 1, it follows that their number is less than 
$n. For the integers of the second class 1 fk (m+ 1) -fx (m) 13 6, so that one 
of the inequalities f(m) -fk (m) > 8, f (m + 1) -fk (m + 1) > 8 holds; hence, from 
Lemma 2, their number is less than &n. 

Hence the Theorem is completely proved for the special case f(pC1) =f(p). 
The transition to the general case when f@a) #j(p) is so simple that it will 
suffice to outline the proof. We define 

fk (m) =pdztf (#), where p? ( m, py+lt m. 

Then the proof runs just as in the special case if we note that there are at 
most c,,n/pk integers m d n divisible by a square greater than p)k, since 

We now take for f (m) the functions __ o(m) and m _I 
m (b Cm) 

where u (m) denotes the 

sum of the divisors of m and + (m) denotes Euler’s function. We can then deduce 
the theorem that the number of integers m <n, for which a(m+ 1) > u(m), is 
asymptotically in; the same is true for + (m), since we can easily deduce from 
Lemmas 1 and 2 that there are only o (n) integers m < n for which the sign of 
a(m) a(m-t-1) . 
__ -mfl 1s not the same as the sign of u(m)-o(m+ 1). 

m 

The same theorem holds for the slightly more general case when x __ f (‘) does 
P P 
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not converge but the primes can be split into two classes, qi’s and qz’s, so that each of 

the series xf*) 
Q1 cl1 

and 5 iE converges and can be proved in a similar way. 

2. Now we come to d (m). Denote by V(m) the number of the different prime 
factors of m. Denote by G (V, n) and S (B, n) the number of integers m < n, for 
which Y(m) < V (m + 1) and V (m) 2 V (m + 1) respectively. We prove that 

and 

(9) 

(10) 

If we use the method of $1 without any modification, denoting by V,(m) 
the number of different primes not greater than p, dividing m, we come to no 
result, since Lemma 2 breaks down. We must take Ic as a function of n, 

e.g. k = nOOg 1L nF. 

We give the particulars of the proof only where it differs essentially from the 
argument used in 3 1. 

First we show that Wi, 4 
f2 S(Vk, W,)=l- (11) 

Let us denote again by a,, u2, . . . , C+ the square-free integers whose only factors 
are primes not greater than 72, and by a (m) the greatest ui contained in m. Evi- 
dently V, (m) = V [a (m)]. 

WTe may show exactly as in Lemma 1 of $1 that the number of integers m < n, 

for which a (m) a (m + 1) > n(log kg @, is o (n). 
_- 

We consider now the number of the m’s, for which a (m) a (m + 1) < n(log Lg n)2. 
We denote by #( n+ ai, aj) the number of integers m < n such that a (m) = a3 

and a(m+ l)=aj. 

We evaluate Z/J (n, a,, q) by Brun’s method. As in $1, we obtain $ (n, ai, ai) 
by taking all integers m < n for which ai 1 m but p t m if p 6 k and p,-tai; and 
ailm-t-1 butptm+lifp<kandpIaj. 

Let now p,,p2, . . . . pl be any 1 primes not dividing uiaj. Denote by 

[ 

n .2l 

@i”jPlP2 1 .** Pl 

the number of integers m <n for which aioj 1 m and 

ms0 or -1 {modpI), 
m=O or - 1 (mod ~~1, 

ms0 or - 1 (mod pl). 
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We evidently have 
n.2” 

-2l< 
1 

n.2’ ’ 1 < n.2” 
+ 2’. 

aiajPlP2 - - - PI ai aj2v2 . . . pl wjw2 . . . pI 
Now, by the sieve of Eratosthenes, we obtain 

‘ln’ a~ya~‘=[~]-[~~‘-[~~‘-“.+[a~a~~~p~’+”. 

+(-1YIz 
C 

2% ’ 1 + 
a,ajplp, . ..pl ‘**’ 

where the summation refers to all sets of 2 primes all less than k: no two of which 
are equal, and no one of which divides aiaj . 

and 

We write 

Let 2t - 1 be the least odd integer greater than 10 log log n, then, following 

Landau’s argument (Vmkszmgen iiber Zahlentheurie, 1, 75), we obtain 
2t-1 

I& (-l)z4Wny a,, aj)< l&)z~;. 

By omitting the square brackets on both sides, we get 
2t-1 
zI;l ( - l)ls,- 21010g10gn+1 (1 +Ii7)1010g10gn+1 < $ (n, ai, aj) 

<$ (~~)~~~+~l0loglog~n+2(~+~)10loglogn+2, 

I=1 

since the number of terms in sz is less than 
k 

0 1 
and 

Now c 
n 

s1 < ~ z 
2>1010g10gn aiajblol0glogn 

<n c 
(2 log log n)l < 2 (2 log log n)h 

aiaj~bl~loglOgn I! a,i aj h! ’ 
F, being the least integer exceeding 1Ologlog n. Since l/h ! c khe-h, 

x 

s < 2n (2 log log n)h eh < 2n (2 log log n)101OglOg n+lelOl@ log fi+l 

z>1010g10gn ’ a,aj hh ai aj (10 log log n)lolOglO~ fl 

2e log log n 

zn 3 1O1oglogn 

0 
2e log log n < 

n 
<- - 

atai 5 a, ai (log n)3 ’ 
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Hence 

c (-I)2 s~~ploglog?z+l(l +~)mwlo~~+l- n <#(n, a,, Uj) 
1 aia~(10g?Z)3 

<c (~~)1sz+21010~log~+2(~+~)1010glog~+~f n 
1 ai aj (log n)” ’ 

where the summation refers to all possible values of 1, and so the sum is finite 
since there are only a finite number of primes not exceeding k. But 

(12) 

PtwrV 

1 1 

and, since a,aj < nlOglWn and k < n(M lo!2 n)8, 

we have 

P-iWj 

Thus from (12) 

ptcw 

Similarly 

n II (l-f)(l-~)~~(n,uj,ai)<~j JIk (1-:)(1+&J. (14) 
%aj pck 

Ptecai Pw4 

Hence finally l- 
4 4 h %Y uj) 4 

logn+2K#(n, Uj, a4) < ’ +logn-2’ 

G(&, n)= 

(15) 

Now 

and 

Thus from (15) 

and so (11) is proved. 
Now similarly, as in (5), we prove that 

Ic:(t@--C%n)I-, 

and IfWW-S(V;,,n)I<a, 

by the aid of two lemmas. 

W-4 

(17) 
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LEMMA 3. The number v’ of integws m 6 n for which 

[Vk(mfl)--&(m) [ ~(logloglogn)4 
it? 0 (n)* 

We have, as in $1,. 

u’ = IZIZ #h ai, Q. 

IP(~)-F’~,~~ogloglogn)” 

From (13) we obtain 

(18) 

(19) 

We detail the proof of Lemma 3, since this is the most complicated part of $2; 
nevertheless it will be seen that it is very similar to the proof of Lemma 1 in $1. 

We split the sum (18) into two parts & and x2, z1 containing only those ai’s 

and ai’s for which n 
Plaiai 
Pf2 

1 
log log log n 

and & all the other ai’s and aj’s. 

x1 evidently does not exceed the number p’ of integers m < n, for which 

g(m)=91w;+r, 1-i <loglo~logn~ ( 1 
PSk 
Pa 

Now, by Legendre’s argument, 

Thus 

hence 

1 1 
(logloglogn)~“~’ 

211GPtLI< 
n log cl2 

log log log log n =o (n). 

Finally we evaluate &. 

For the ai’s and ai’s occurring in x2, we have, since I-J 
Pa 

from the dehnition of x2, 

,?[k H< (1ogW 

c13 log log log n = c13 log log log n (log log 91)~ 
(logn)2 * 

Hence, from (18) and (19), 

x2< 

c,,logloglogn(loglogn)6 

(log n12 
x;c 2. (20) 
aaj z i 

I Fb$- 17(aol -t (log log b??o’ 
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First we estimate the sum Ii2 2 for fixed ai. 
Inqb- P(at)l ~mgloglogla)“~j 

We require the sum of the reciprocal value R of the a’s which have exactly 
v prime factors. 

We evidently have 

b ) z: v PA* < (log log k + C1*)a < (log log k + CJQ 
v! ’ q! ) 

where q denotes the greatest integer not exceeding log log k + c14. 
Further, by Stirling’s formula, 

since 

R<c (W~g~+~14)QeQ~c log k log n 
15 

a"¶+ lf3 (log log k)& i ‘~3 (log log n)7/2 ’ 

(w%+cl*)Q< l+% Q<c 
!P ( 1 II 

18' 

Hence summing for V, which runs through 2 (log log log n)* values, we get 

Since 

c 1 < 2c log 72 (log log log n)4 

I~(~)-~(~)l<(logloglogn)'aj 
16 (log log n)7/a 

-. 

~~=~~(l+$)~C1ol~g~=(~~~~~g~)g, 
. 

we have, on multiplying the two right-hand sides just above, 

xc 1 
< czo 

(log n) 2 (log log log n)4 
aa 

i j (log log Y&)13/2 * 
Iv(ai)-Y(~)~(~ggloglog12)’ 

From this by (20) 
x2 = c21 

(log 1% log %I5 = o (n) ; 
(log log 7&)1/Z 

hence Anally v’=X1+&=o(n). 

LEi\lU 4. There are only 0 (n) integers m ,< n, for which one of the inequalities 

F(m)--T$,(m) > (logloglogn)2, V(m+ l)-&(m+ 1) > (logloglogn)2 holds. 
The proof runs parallel to that of Lemma 2 in the first part. Just as we obtained 

(5) and (6) fro m L emmas 1 and 2, so we derive (16) and (17) from Lemmas 3 
and 4. 

From (ll), (16) and (17), it follows that 

By Lemmas 3 and 4 we can show, as in $1, that there are only o (n) integers 
m<nforwhichV((m)=P(m+l). Fromthiswededuce 
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To obtain Chowla’s conjecture, we need only prove that there are o(n) 
integers m<n for which V(m+l)-‘V(m)>0 and d(m+l)-d(m)<O, or 
V (m + 1) - V (m) 6 0 and d (m + 1) -d (m) 2 0. It will be sufficient to settle the 
first case. 

First we observe that it is easy to obtain from Lemmas 3 and 4 that for almost 
all integers” m<n, 1 V(m+l)--V(m) 1 >(logloglogn)2. 

We now split the integers for which both F(m+ l)- V(m) > 0 and 
cl (m + 1) - d (m) < 0 into two classes, putting in the first those for which 

V (m + 1) - V (m) < (log log log n)2, 

and in the second those for which 

V (m + 1) - V (m) Z (log log log n)2. 

The number of the integers of the first class is o (n), by the remark above. 
2Wm+l, 

The integers of the second class satisfy W > 2floglOg log@, and since 

d (m+ I) 2 2v(m+l) we have d(m) 2 2J’-(m) 2(10g10g10gn)2. Put m=ABz, where A is 
square-free. We have d (m) < d (A) d (B2) = 2 I%) d (Bz), so that d (33) 2 2(log 1% log fij2 

and hence B2 > 2(log10glogn)2. Thus m is divisible by a square not less than 
2(W log log @, so that the number of integers of the second class is less than equal to 

z ;=o (n). 
12, 2&a lOb’1”:! 10” 

Hence the result. 

* More generally we can prove the following theorem. Let X (m) be an arbitrary function 
with lim X (n) = co. Then, for almost all integers m < 12, 

n+m 
log log n 
------<<V(m+l)-V(m)[<loglognX(12). 

X(n) 

The first inequality may be proved by similar but stronger lemmas than Lemmas 3 and 4. 
The second inequality has been proved by P. TurSin as follows: 

5 (~(nl.+l)-V(m))~=~~~~,f(V(m+l)-loglogn)-(V(m)-loglog~)}~ 
m=1 

< 2 2 (Y(m) -log log?%)2 +natl(V (m + 1) - loglogn)2 
c ,?I=1 1 

=o(~loglog*n), 

which immediately establishes the result. 


