ON THE DENSITY OF SOME SEQUENCES OF NUMBERS: III

PAUL ERDÖS*.

[Extracted from the Journal of the London Mathematical Society, Vol. 13, 1938.]

The functions f(m) and $\phi(m)$, where $\phi(m) > 0$, are called additive and multiplicative respectively if they are defined for non-negative integers m and if, for $(m_1, m_2) = 1$,

$$f(m_1 m_2) = f(m_1) + f(m_2),$$

$$\phi(m_1 m_2) = \phi(m_1) \cdot \phi(m_2).$$

The first question is under what conditions does the density of the integers for which f(m) [or $\phi(m)$] is not less than c exist, for any given c. If we denote this density by $\psi(c)$, the second question is, under what conditions is $\psi(c)$ a continuous function of c. We shall call the function $\psi(c)$ the distribution function of f(m).

Since the logarithm of a multiplicative function is additive, it will be sufficient to consider additive functions only.

So far as I know, the first paper on this subject is due to Schoenberg[†], who proved (among other results) that $\phi(m)/m$, where $\phi(m)$ is Euler's

^{*} Received 30 August, 1937; read 18 November, 1937.

[†] I. J. Shoenberg, "Über die asymptotische Verteilung reeller Zahlen mod 1 ", Math. Zeitschrift, 28 (1928), 171–200.

function has a continuous distribution function. Later Davenport^{*} proved the same for $\sigma(m)/m$, where $\sigma(m)$ denotes the sum of the divisors of *m*, *i.e.* he proved that the density of the abundant numbers exists. Some time ago Schoenberg published some new and general results[†], which included all previously known results. He proved the following theorems: Let an additive function f(m) satisfy the condition that

$$\sum_{p} \frac{||f(p)||}{p}$$

converges, where ||x|| = min(1, |x|). Then

1. The distribution function of f(m) exists.

2. If f(m) satisfies the supplementary condition that there exists an infinite sequence of primes p_1, p_2, \ldots with $f(p_{\mu}) \neq f(p_{\nu})$ for $\mu \neq \nu$ and such that $\sum_{\nu=1}^{\infty} \frac{1}{p_{\nu}}$ diverges, then the distribution function is continuous.

3. If, on the other hand, $\sum_{f(p)\neq 0} \frac{1}{p}$ converges, the distribution function is purely discontinuous.

In his proofs Schoenberg used the theory of Fourier transforms.

Independently of Schoenberg I have proved by elementary methods the following results:

(i) Let the additive function f(m) satisfy the following conditions:

(1)
$$f(m) \ge 0.$$

(2) $f(p_1) \ne f(p_2).$
(3) $\sum_{p} \frac{||f(p)||}{p}$ converges.

Then the distribution function of f(m) exists. Implicitly I also proved that the distribution function is continuous.

(ii) If $f(m) \ge 0$ and $\sum_{p} \frac{||f(p)||}{p}$ diverges, then, for every c, f(m) > c for almost all m.

^{*} H. Davenport, "Über Numeri Abundantes", Sitzungsberichte der Preussischen Akademie, Phys. Math. Klasse (1933), 830-837.

[†] I. J. Schoenberg, "On asymptotic distribution of arithmetical functions", *Trans. American Math. Soc.*, 39 (1936), 315–330. This paper was presented to the Society on 31 March, 1934.

[‡] P. Erdös, "On the density of some sequences of numbers", Journal London Math. Soc., 10 (1935), 120-125. This paper will be referred to as I.

[§] This result is also proved in Schoenberg's paper previously quoted,

In a second paper* (referred to in the following as II) I have proved the following results:

(i) Let the additive function f(m) satisfy the following conditions:

$$egin{aligned} &f(m)\geqslant 0,\ &\sum_p rac{||f(p)||}{p} & ext{converges}; \end{aligned}$$

then the distribution function of f(m) exists.

(ii) If f(m) satisfies the following supplementary condition:

$$\sum_{f(p)\neq 0} \frac{1}{p} \quad \text{diverges,}$$

then the distribution function is continuous. This result is not stated explicitly. This result together with the third result of Schoenberg gives a necessary and sufficient condition for the continuity of the distribution function in the case $f(m) \ge 0$.

In the present paper I prove the following generalization of Schoenberg's and my own results:

(i) Let the additive function f(m) satisfy the following conditions:

(a)
$$\sum_{p} \frac{||f(p)||'}{p}$$
 converges,

where ||f||' denotes f(p) for $|f(p)| \leq 1$ and 1 for |f(p)| > 1,

(b)
$$\sum_{p} \frac{||f(p)||^2}{p}$$
 converges;

then the distribution function of f(m) exists.

(ii) If the additive function satisfies the supplementary condition

(c)
$$\sum_{f(p)\neq 0} \frac{1}{p}$$
 diverges;

then the distribution function is continuous.

(iii) If $\sum_{f(p)\neq 0} \frac{1}{p}$ converges, the distribution function is purely discontinuous.

^{*} P. Erdös, "On the density of some sequences of numbers: II", Journal London Math. Soc., 12 (1937), 7-11.

It is easy to see that this result contains the result of Schoenberg as well as my own [except (ii) of I].

The proof is elementary and very similar to the argument used in I and II.

First suppose that $\sum_{f(p)\neq 0} \frac{1}{p}$ converges. This case is settled as in II.

Denote by a_1, a_2, \ldots the integers composed of the primes p for which $f(p) \neq 0$. Evidently $\sum \frac{1}{a_i} = \prod_{f(p) \neq 0} \frac{1}{1 - 1/p}$ converges.

Denote by a(m) the greatest a_i contained in m. Since $\sum_{f(p)\neq 0} \frac{1}{p}$ converges, an application of the sieve of Eratosthenes shows that the density of integers not divisible by any p with $f(p) \neq 0$ is equal to $\prod_{f(p)\neq 0} \left(1 - \frac{1}{p}\right)$. Hence the density of the integers m for which $a(m) = a_i$ is

$$\frac{\prod_{f(p)\neq 0} \left(1-\frac{1}{p}\right)}{a_i}.$$

Finally, since $\sum 1/a_i$ converges, the density of the integers for which $f(m) \ge c$ is equal to $\prod_{f(p) \ne 0} \left(1 - \frac{1}{p}\right) \sum_{f(a_i) \ge c} \frac{1}{a_i}$; thus the distribution function exists. It is clear that its points of discontinuity are the values $f(a_i)$. Thus it is purely discontinuous, and this proves (iii).

Let us now suppose that $\sum_{f(p)\neq 0} \frac{1}{p}$ diverges.

We denote by N(f; c, d) the number of positive integers not exceeding n for which

$$c\leqslant f(m)\leqslant d,$$

where c, d are given constants [when $d = \infty$ we write N(f; c)].

As in I and II it is sufficient to consider the special case $f(p^{a}) = f(p)$ for any a, so that

$$f(m) = \sum_{p \mid m} f(p).$$

Consider also the function

$$f_k(m) = \sum_{\substack{p \mid m \\ p \leqslant k}} f(p).$$

We show that $N(f_k; c)/n$ tends to a limit. For, if we denote by A_1, A_2, \ldots, A_i the integers whose prime factors are not greater than k and for which also $f_k(A) \ge c$, we obtain the integers $m \le n$ for which $f_k(m) \ge c$

122

by taking all the multiples of $A_1, A_2, ..., A_i$ not exceeding *n*. Hence $N(f_k; c)/n$ tends to a limit.

To prove the existence of N(f; c)/n it is sufficient to show that for every $\epsilon > 0$ a k_0 exists so great that, for every $k > k_0$ and $n > n(\epsilon)$, $|N(f; c) - N(f_k; c)|/n < \epsilon$. This will be the case if the number of integers $m \leq n$ for which $f_k(m) < c$ and $f(m) \geq c$ or $f_k(m) \geq c$ and f(m) < c is less than ϵn .

We require three lemmas.

LEMMA 1. Let the additive function f(m) satisfy the conditions (a) and (b). The number of integers $m \leq n$ for which

$$||f(m)-f_k(m)|>\delta$$

is then less than $\frac{1}{2}\epsilon n f r k > k_0(\epsilon, \delta)$ and $n > n_0(k, \epsilon, \delta)$.

Proof. We divide the integers $m \leq n$ for which $|f(m)-f_k(m)| > \delta$ into two classes. In the first class are the integers divisible by a prime p > k with $|f(p)| \geq 1$, and in the second class all other integers. From (b) it follows that $\sum_{|f(p)| > 1} \frac{1}{p}$ converges; hence the number of integers $m \leq n$ of

the first class is less than

$$\sum_{\substack{p>k\\f(p)|\ge 1}}\frac{n}{p} < \frac{1}{4}\epsilon n$$

for sufficiently large k.

For the integers of the second class we evidently have

$$\begin{split} & \stackrel{n}{\overset{n}{\sum}}_{m=1}^{r} [f(m) - f_{k}(m)]^{2} \\ & \leqslant \sum_{\substack{p > k \\ |f(p)| < 1}} f(p)^{2} \left[\frac{n}{p} \right] + 2 \sum_{\substack{p > q > k \\ |f(p)|, |f(q)| < 1}} f(p)f(q) \left[\frac{n}{pq} \right] \\ & < \sum_{\substack{p > k \\ |f(p)| < 1}} \frac{nf(p)^{2}}{p} + 2 \sum_{\substack{p > q > k \\ pq \leq n \\ |f(p)|, |f(q)| < 1}} \frac{nf(p)f(q)}{pq} + 2 \sum_{\substack{p > q > k \\ pq \leq n \\ |f(p)|, |f(q)| < 1}} |f(p)f(q)|, \end{split}$$

where Σ' means that the summation is extended only over the *m*'s of the second class.

Now

$$2\sum_{\substack{p>q>k\\pq\leqslant n\\|f(p)|,|f(q)|<1}}\frac{f(p)f(q)}{pq} \leqslant \left(\sum_{\substack{\forall n>p>k\\|f(p)|<1}}\frac{f(p)}{p}\right)^2 + 2\sum_{\substack{n>p>\sqrt{n}\\|f(p)|<1}}\frac{f(p)}{p}\sum_{\substack{n/p\geqslant q>k\\|f(q)|<1}}\frac{f(q)}{q};$$

P. Erdő

but, from (a) and (b),

$$\left| \sum_{\substack{n' \geqslant q > k \\ |f(q)| < 1}} \frac{f(q)}{q} \right| < \eta$$

for any fixed $\eta > 0$, and all n' if k is sufficiently large, so that

$$2 \sum_{\substack{p > q > k \\ pq \le n \\ |f(p)|, |f(q)| < 1}} \frac{f(p)f(q)}{pq} < \eta^2 + 2\eta \sum_{n > p > \sqrt{n}} \frac{1}{p} < c\eta,$$
(1)

since

$$\sum_{n>p>\sqrt{n}}\frac{1}{p} < c.$$

(The c's denote absolute constants, not necessarily the same.)

Thus finally from (b), (1) and from the fact that the number of integers of the form pq not exceeding n is o(n), we get

$$\sum_{m=1}^{n'} [f(m)-f_k(m)]^2 < \tfrac{1}{8}\epsilon\delta^2 n + c\eta n + o(n) < \tfrac{1}{4}\epsilon\delta^2 n.$$

Thus the number of integers of the second class is also less than $\frac{1}{4}\epsilon n$; and the lemma is proved.

LEMMA 2. Let the additive function f(m) satisfy (a), (b), and (c), then for every $\epsilon > 0$ there exists a $\delta > 0$ such that

$$N(f; c-\delta, c+\delta) < \epsilon n.$$

Proof. We divide the integers $m \leq n$ for which $c - \delta \leq f(m) \leq c + \delta$ into two classes, putting in the first those for which $|f(m) - f_k(m)| > \delta$, and in the second class the others. By Lemma 1, the number of integers of the first class is less than $\frac{1}{2} \epsilon n$. For the integers of the second class,

$$c-2\delta \leqslant f_k(m) \leqslant c+2\delta;$$

hence we see that Lemma 2 will be proved if we can show that the number of integers $m \leq n$, for which $c-2\delta \leq f_k(m) \leq c+2\delta$, is less than $\frac{1}{2}\epsilon n$ for sufficiently large $k = k(\epsilon)$ say.

Since $\sum_{f(p)\neq 0} \frac{1}{p}$ diverges, we may suppose without loss of generality that $\sum_{(p)>0} \frac{1}{p}$ diverges.

124

We now denote

- (1) by q_i the primes less than or equal to k, for which $f(q_i) > 4\delta$,
- (2) by r_i the other primes less than or equal to k,
- (3) by a_i the square-free integers composed of primes less than or equal to k for which $c-2\delta \leq f(a) \leq c+2\delta$,
- (4) by β_1 , β_2 , ... the square-free integers composed of the q_i ,
- (5) by $\gamma_1, \gamma_2, \ldots$ the square-free integers composed of the r_i ,
- (6) by $d_{\alpha}(m)$ the number of divisors of m among the α_i ,
- (7) by $d_{\gamma}(m)$ the number of divisors of m among the γ_i ,
- (8) by $d_k(m)$ the number of divisors of m among the square-free integers composed of primes less than or equal to k.

Now choose δ so small and k so large that

$$\Sigma \frac{1}{q_i} > B = B(\epsilon),$$

where B is sufficiently large. This is evidently possible since $\sum_{f(p)>0} \frac{1}{p}$ diverges.

We then prove

LEMMA* 3.
$$\Sigma \frac{1}{a_i} \leqslant \epsilon^2 \log k.$$

Proof. We evidently have

$$\sum_{l=1}^{M} d_{a}(l) = \sum_{a_{i}} \left[\frac{M}{a_{i}} \right] > \sum_{a_{i}} \frac{M}{a_{i}} - M.$$
 (1)
 $\sum_{l=1}^{M} d_{a}(l) = \Sigma_{1} + \Sigma_{2},$

We write

where Σ_1 contains the *l*'s having less than *B* divisors amongst the q_i , and Σ_2 all the other *l*'s.

Then

$$\begin{split} \Sigma_1 &< 2^B \sum_{l=1}^M d_{\gamma}(l) = 2^B \sum_{\gamma_i} \left[\frac{M}{\gamma_i} \right] \leqslant M 2^B \prod_{r_i} \left(1 + \frac{1}{r_i} \right) = M 2^B \frac{\prod_{p \leq k} \left(1 + \frac{1}{p} \right)}{\prod_{q_i} \left(1 + \frac{1}{q_i} \right)} \\ &\leqslant \frac{cM 2^B \log k}{e^B} < \epsilon^3 M \log k \end{split}$$

for sufficiently large B = B(e) say.

* This Lemma is proved in II.

We now estimate Σ_2 .

Let *l* be an integer of Σ_2 ; then, if $\beta = q_1 q_2 \dots q_x$, $r = r_1 r_2 \dots r_y$,

 $l = \beta \gamma t$,

where $x \ge B$ and t is composed of primes greater than k and the factors of βγ.

We estimate $d_a(l)$ as follows.

Any a | l is of the form $a = \beta_i \gamma_i$, where $\beta_i | \beta, \gamma_i | \gamma$.

The β_i 's belonging to the same γ_r cannot divide one another, for if we had $a_1 = \beta_1 \gamma$, $a_2 = \beta_2 \gamma$, and $\beta_1 \mid \beta_2$, then

$$4\delta \geqslant f(a_2) - f(a_1) = f(\beta_2) - f(\beta_1) > 4\delta,$$

an evident contradiction. From a theorem of Sperner* it follows immediately that a set of divisors of the product $q_1 q_2 \dots q_x$, of which no one is divisible by any other has at most $\begin{pmatrix} x \\ \lfloor \frac{1}{2}x \rfloor \end{pmatrix}$ elements.

Further, from Stirling's formula

$$(2\pi)^{\frac{1}{2}} n^{n+\frac{1}{2}} e^{-n} < n! \leq (2\pi)^{\frac{1}{2}} n^{n+\frac{1}{2}} e^{-n} e^{\frac{1}{4}},$$

we easily deduce that

$$\begin{split} & \begin{pmatrix} x \\ [\frac{1}{2}x] \end{pmatrix} \leqslant \frac{2^x}{x^{\frac{1}{2}}} \leqslant \frac{2^x}{B^{\frac{1}{2}}}, \\ & d_{\scriptscriptstyle a}(l) \leqslant \frac{2^{x+y}}{B^{\frac{1}{2}}} \leqslant \frac{d_k(l)}{B^{\frac{1}{2}}}. \end{split}$$

so that

Hence $\Sigma_2 < \sum_{l=1}^M d_{\mathbf{a}}(l) \leqslant \frac{\sum\limits_{l=1}^M d_k(l)}{B^{\frac{1}{2}}} \leqslant \frac{M}{B^{\frac{1}{2}}} \prod_{p \leqslant k} \left(1 + \frac{1}{p}\right) \leqslant \frac{cM \log k}{B^{\frac{1}{2}}} < \epsilon^3 M \log k$

for sufficiently large B.

Finally, from (1),

$$\Sigma \frac{1}{a_i} < 2\epsilon^3 \log k + 1 < \epsilon^2 \log k;$$

and so Lemma 3 is proved.

We now prove Lemma 2, as follows.

126

^{*} Sperner, "Ein Satz über Untermengen einer unendlichen Menge", Math. Zeitschrift, 27 (1928), 544-548.

We divide the integers $m \leq n$ for which $c-2\delta \leq f_k(m) \leq c+2\delta$ into two classes. In the first class are the integers for which m is divisible by a square greater than $1/\epsilon^4$, and in the second class the other integers. The number of integers of the first class is evidently less than or equal to

$$\sum_{r>1/\epsilon^2}\frac{n}{r^2} < c\epsilon^2 n.$$

The number of integers of the second class we estimate as follows. We write $K(m) = \prod_{\substack{p \leq k \\ n \mid m}} p$. Since $c - 2\delta \leq f_k(m) = f[K(m)] \leq c + 2\delta$, K(m) is

evidently an a. The integers m of the second class for which $K(m) = a_i$ are of the form $a_i\mu t$, where μ is composed of the prime factors of a_i and t is composed of primes greater than k. m is divisible by a square greater than or equal to μ ; for if $\mu = p_1^{2a_1} p_2^{2a_2} \dots p_1^{2\beta_1+1} \dots$, m is divisible by $p_1^{2a_1} p_2^{2a_2} \dots p_1^{2\beta_1+2} \dots$ Therefore $\mu < 1/\epsilon^4$. Hence it easily follows from the sieve of Eratosthenes that the number of integers m of the second class for which $K(m) = a_i$ is less than or equal to

$$\frac{cn\prod_{p$$

Hence the number of the integers of the second class is less than or equal to

$$cn \prod_{p \leq k} \left(1 - \frac{1}{p}\right) \sum \frac{1}{\alpha_i} \sum_{\mu > 1/\epsilon^4} \frac{1}{\mu} < cn \epsilon^2 \log \frac{1}{\epsilon^4} < \frac{1}{2} \epsilon n;$$

this proves Lemma 2.

We now prove the existence of the distribution function of f(m). We divide the integers not exceeding n satisfying the two conditions

$$f_k(m) < c, \quad f(m) \ge c$$

into two classes. In the first class we put the integers m for which $f(m) > c+\delta$. For these, $f(m)-f_k(m) > \delta$, and so, from Lemma 1, their number is less than $\frac{1}{2}\epsilon n$. In the second class, we put the integers for which $f(m) \leq c+\delta$. Their number is less than $\frac{1}{2}\epsilon n$ from Lemma 2. Similarly for the m for which $f_k(m) \geq c$, f(m) < c. Thus the existence of the distribution function is proved.

It is evident that the distribution function is a non-increasing function of c, and so its continuity is an immediate consequence of Lemma 2. This completes the proof of our result.

University of Manchester.

Printed by C. F. Hodgson & Son, Ltd., Newton St., London, W.C.2.