ON THE HAUSDORFF DIMENSION OF SOME SETS IN EUCLIDEAN SPACE

PAUL ERDÖS

Let *E* be a closed set in *n*-dimensional space, *x* a point not in *E*. Denote by S(x) the largest sphere of center *x* which does not contain any point of *E* in its interior. Put $\phi(x) = E \cap \overline{S}(x)$. (\overline{A} denotes the closure of *A*.) Denote by M_k the set of points for which $\phi(x)$ contains *k* or more linearly independent points (that is, points which do not lie in any (k-2)-dimensional hyperplane). M_k is defined for $k \le n+1$. In a previous paper I proved that M_2 has *n*-dimensional measure 0 and conjectured that M_k has Hausdorff dimension not greater than n+1-k. In the present note we shall prove this conjecture. In my previous paper I also proved that M_{n+1} is countable, but the proof there given applied only for the case n=2; now we are going to give a general proof.

Let R be any set in n-dimensional space. Let $x \in R$. We define the contingent¹ of R at x (contg_R x) as follows: The contingent will be a subset of the unit sphere. A point z of the unit sphere belongs to contg_R x if and only if there exists a sequence of points y_1, y_2, \cdots in R converging to x so that the direction of the vector connecting x with y_i tends to the direction of the vector connecting the center of the unit sphere with z. First we state the following lemma.

LEMMA. Let there be given a set R in n-dimensional space. Assume that for every x, $\operatorname{contg}_R x$ does not contain any point of the intersection of the unit sphere with a k-dimensional hyperplane going through its center (the hyperplane can depend on x). Then R is contained in the sum of countably many surfaces of finite (n-k)-dimensional measure.

This lemma is well known.2

THEOREM 1. Let k < n+1. Then M_k is contained in the sum of countably many surfaces of finite (n+1-k)-dimensional measure. If k=n+1, then M_k is countable.³

Received by the editors September 24, 1945.

¹G. Bouligand, Introduction à la géometrié infinitésimale directe. Also Saks, Theory of the integral.

² Saks, ibid. pp. 264-266 and pp. 304-307. Also Roger, C. R. Acad. Sci. Paris vol. 201 (1935) pp. 871-873.

^{*} For n=2 this theorem is proved by C. Pauc, Revue Scientifique, August, 1939.

Remark. This clearly means that the Hausdorff dimension of M_k $(k \le n+1)$ is not greater than n+1-k.

Let us first consider the case k = n+1. Assume that $x \in M_{n+1}$. Let $z_i \in \phi(x), i = 1, 2, \dots, n+1$, and assume that the z's are linearly independent. Denote by f(x) the maximum value of the volume of the simplices determined by the z's (since $\phi(x)$ is closed the maximum is attained). Define now $N_{n+1}^{(c)} = N$ to consist of all the points $x \in M_{n+1}$ for which $f(x) \ge c$. It clearly will be sufficient to show that N is countable (for every c). In fact we shall show that N is isolated (in other words no $x \in N$ is a limit point of N-x, that is, we shall prove that for every $x \in N$ contg_N x is empty. If this would not hold then N would contain an infinite sequence of points y_i coverging to x so that the direction of the line connecting x with y_i would converge to a fixed direction. Let Z_i be a point of $\phi(x)$ which is closest to y_i , and let A_i be the (unique) hyperplane through Z_i perpendicular to the segment xy_j . It is easy to see that as $j \rightarrow \infty$, A_j converges to a limiting hyperplane A. Moreover it is easily seen that the set $\phi(y_i)$ is ultimately contained in any preassigned neighborhood of A. Thus for large enough *i*, the volume $f(y_i)$ must be less than *c*, an evident contradiction; this completes our proof.

Next we prove our theorem in the general case. Let $k \le n$ and define M_k' to be the set of all points x for which the maximum number of linearly independent points in $\phi(x)$ is exactly k. It will clearly be sufficient to show that M_k' is contained in the sum of countably many surfaces of finite (n+1-k)-dimensional measure. Let $x \in M_k'$, and let f(x) be the maximum volume of the k-dimensional simplices formed from the points z_i , $i \le k+1$, where $z_i \in \phi(x)$. $x \in M_k'^{(c)} = N'$ if $f(x) \ge c$. Let $x \in N'$, and z_i , $i \le k+1$, be the points which determine a simplex of maximal volume. Then a simple geometrical argument (similar to the previous one) shows that $\operatorname{contg}_{N'} x$ consists only of the directions through x which are perpendicular to the hyperplane determined by the z_i 's, $i \le k+1$. Thus our theorem follows from the lemma.

Let *E* be a closed set, $x \in E$. Denote by g(x) the distance of *x* from *E*. It has been proved⁴ that g(x) has a derivative $-\cos \alpha$ in every direction (x, y), where α is the smallest angle formed by the direction (x, y) with the direction (x, z), z in $\phi(x)$. Clearly if $x \in E$ the derivative of g(x) can be 0. We shall show that the derivative of g(x) is 0 for almost all points of *E*.

⁴ Mises, C. R. Acad. Sci. Paris vol. 205 (1937) pp. 1353-1355. See also Golab, ibid. vol. 206 (1938) pp. 406-408 and Bouligand, ibid. vol. 206 (1938) pp. 552-554.

109

Let $x \in E$. Denote by $S(x, \epsilon)$ the sphere of center x and radius ϵ . Denote by $G(x, \epsilon)$ the greatest distance of the points of $\overline{S}(x, \epsilon)$ from E. We are going to prove the following theorem.

THEOREM 2. For almost all points of E (that is, for all points of E except a set of n-dimensional measure 0)

$$\lim G(x,\,\epsilon)/\epsilon = 0.$$

It is well known that almost all points of E are points of Lebesgue density 1. Let x be such a point, and suppose that

$$\lim G(x, \epsilon)/\epsilon \neq 0.$$

This means that there exists an infinite sequence ϵ_i and points z_i , $z_i \in \overline{S}(x, \epsilon_i), \epsilon_i \rightarrow 0$, such that the distance of z_i from E is greater than $c\epsilon_i$, where c > 0. But this clearly means that x can not have Lebesgue density 1. This contradiction establishes our theorem.

UNIVERSITY OF MICHIGAN