ON THE DENSITY OF SOME SEQUENCES OF INTEGERS

P. ERDÖS

Let $a_1 < a_2 < \cdots$ be any sequence of integers such that no one divides any other, and let $b_1 < b_2 < \cdots$ be the sequence composed of those integers which are divisible by at least one a. It was once conjectured that the sequence of b's necessarily possesses a density. Besicovitch¹ showed that this is not the case. Later Davenport and I² showed that the sequence of b's always has a logarithmic density, in other words that $\lim_{n\to\infty} (1/\log n) \sum_{b_i \leq n} 1/b_i$ exists, and that this logarithmic density is also the lower density of the b's.

It is very easy to see that if $\sum 1/a_i$ converges, then the sequence of b's possesses a density. Also it is easy to see that if every pair of a's is relatively prime, the density of the b's equals $\prod (1-1/a_i)$, that is, is 0 if and only if $\sum 1/a_i$ diverges. In the present paper I investigate what weaker conditions will insure that the b's have a density. Let f(n) denote the number of a's not exceeding n. I prove that if $f(n) < cn/\log n$, where c is a constant, then the b's have a density. This result is best possible, since we show that if $\psi(n)$ is any function which tends to infinity with n, then there exists a sequence a_n with $f(n) < n \cdot \psi(n)/\log n$, for which the density of the b's does not exist. The former result will be obtained as a consequence of a slightly more precise theorem. Let $\phi(n; x; y_1, y_2, \dots, y_n)$ denote generally the number of integers not exceeding n which are divisible by x but not divisible by y_1, \dots, y_n . Then a necessary and sufficient condition for the b's to have a density is that

(1)
$$\lim_{\epsilon\to 0} \limsup_{n\to\infty} \frac{1}{n} \sum_{n^{1-\epsilon} < a_i \leq n} \phi(n; a_i; a_1, a_2, \cdots, a_{i-1}) = 0.$$

The condition (1) is certainly satisfied if $f(n) < cn/\log n$, since

$$\frac{1}{n} \sum_{n^{1-\epsilon} < a_i \leq n} \phi(n; a_i; a_1 \cdots a_{i-1}) < \frac{1}{n} \sum_{n^{1-\epsilon} < a_i \leq n} \left[\frac{n}{a_i} \right]$$
$$< \sum_{n^{1-\epsilon} < m \log m < n} \frac{c'}{m \log m} = O(\epsilon) + O\left(\frac{1}{n}\right).$$

Received by the editors April 28, 1947, and, in revised form, September 5, 1947. ¹ Math. Ann. vol. 110 (1934–1935) pp. 336–341.

² Acta Arithmetica vol. 2.

P. ERDÖS

As an application of the condition (1) we shall prove that the set of all integers m which have two divisors d_1 , d_2 satisfying $d_1 < d_2 \le 2d_1$ exists. I have long conjectured that this density exists, and has value 1, but have still not been able to prove the latter statement.

At the end of the paper I state some unsolved problems connected with the density of a sequence of positive integers.

THEOREM 1. Let $\psi(n) \rightarrow \infty$ as $n \rightarrow \infty$. Then there exists a sequence $a_1 < a_2 < \cdots$ of positive integers such that no one of them divides any other, with $f(n) < n\psi(n)/\log n$, and such that the sequence of b's does not have a density.

PROOF. We observe first that the condition that one a does not divide another is inessential here, since we can always select a subsequence having this property, such that every a is divisible by at least one a of the subsequence. The condition on f(n) will remain valid, and the sequence of b's will not be affected.

Let $\epsilon_1, \epsilon_2, \cdots$ be a decreasing sequence of positive numbers, tending to 0 sufficiently rapidly, and let $n_r = n_r(\epsilon_r)$ be a positive integer which we shall suppose later to tend to infinity sufficiently rapidly. We suppose that $n_r^{1-\epsilon_r} > n_{r-1}$ for all r. We define the a's to consist of all integers in the interval $(n_r^{1-\epsilon_r}, n_r)$ which have all their prime factors greater than $n_r^{\epsilon_r}$, for $r = 1, 2, \cdots$.

We have first to estimate f(m), the number of a's not exceeding m. Let r be the largest suffix for which $n_t^{1-\epsilon_r} \leq m$. If $m \geq n_r^2$, then clearly

$$f(m) < n_r \leq m^{1/2} < \frac{m}{\log m} \cdot$$

Suppose, then, that $m < n_r^2$. We have

$$f(m) < n_{r-1} + M_{\epsilon}(m),$$

where $M_{\epsilon}(m)$ denotes the number of integers not exceeding *m* which have all their prime factors greater than $m^{\frac{2}{r}/2}$. By Brun's³ method we obtain

$$M_{\epsilon}(m) < c_1 m \sum_{p \le m \epsilon_r^2/2} (1 - p^{-1}) < c_2 \frac{m}{\epsilon_r^2 \log m},$$

where c_1 , c_2 , denote positive absolute constants. Hence

$$f(m) < n_{r-1} + c_2 \frac{m}{\epsilon_r^2 \log m} < \frac{n\psi(m)}{\log m}$$

686

³ P. Erdös and M. Kac, Amer. J. Math. vol. 62 (1940) pp. 738-742.

provided $n_r(\epsilon_r)$ is sufficiently large. It will suffice if

$$\frac{c_2}{\epsilon_r^2} < \frac{1}{2} \psi(n_r^{1-\epsilon_r}).$$

We have now to prove that the sequence of b's (the multiples of the a's) have no density. Denote by $A(\epsilon, n)$ the density of the sequence of all integers which have at least one divisor in the interval $(n^{1-\epsilon}, n)$. In a previous paper⁴ I proved that $A(\epsilon, n) \rightarrow 0$ if $\epsilon \rightarrow 0$ and $n \rightarrow \infty$ independently. Thus if $\epsilon \rightarrow 0$ and $n \rightarrow \infty$ sufficiently fast, we have

(2)
$$\sum_{r=1}^{\infty} A(\epsilon_r, n_r) < \frac{1}{2}$$

Denote the number of b's not exceeding m by B(m). It follows from (2) that if $n_r \rightarrow \infty$ sufficiently rapidly, and $m = n_r^{1-\epsilon_r}$, then

$$(3) B(m) < m/2.$$

This proves that the lower density of the b's is at most 1/2.

Next we show that the upper density of the b's is 1, and this will complete the proof of Theorem 1. It suffices to prove that

(4)
$$n_r - B(n_r) = o(n_r),$$

in other words that the number of integers up to n_r which are not divisible by any *a* is $o(n_r)$. Consider any integer *t* satisfying $n_r^{1-\epsilon_r/2} < t \leq n_r$, and define

$$(g_{\epsilon_r}(t)) = g_r(t) = \prod_p' p^{\alpha},$$

where the dash indicates that the product is extended over all primes p with $p \leq n_r^{e}$, and p^{α} is the exact power of p dividing t.

If $g_r(t) < n^{\epsilon_r/2}$, then t is divisible by an a, since $t/g_r(t) > n^{1-\epsilon_r}$ and $t/g_r(t)$ has all its prime factors greater than $n_r^{\epsilon_r^2}$, and so is an a. Hence

(5)
$$n_r - B(n_r) < n_r^{1-\epsilon_r/2} + C(n_r),$$

where $C(n_r)$ denotes the number of integers $t \le n_r$ for which $g_r(t) \ge n_r^{r/2}$. We recall that the exact power of a prime p dividing N! is

$$\sum_{\nu=1}^{\infty} \left[\frac{N}{p^{\nu}} \right] < \sum_{\nu=1}^{\infty} \frac{N}{p^{\nu}} = \frac{N}{p-1} \cdot$$

Hence

4 J. London Math. Soc. vol. 11 (1936) pp. 92-96.

1948]

P. ERDÖS

[August

$$\prod_{t=1}^{n_r} g_r(t) \leq \prod_{p \leq n\epsilon_r^2} p^{n_r/p-1} = \exp\left(n_r \sum_{p \leq n\epsilon_r^2} \frac{\log p}{p-1} < \exp\left(c_3 \epsilon_r^2 n_r \log n_r\right) = n_r^{c_3 \epsilon_r^2 n_r}\right)$$

Hence $\binom{\epsilon_r/2}{n_r}^{C(n_r)} < \frac{c_3 \epsilon_r^2 n_r}{n_r}$, whence (6) $C(n_r) < 2c_3 \epsilon_r n_r$.

Substituted in (5), this proves (4), provided that $n_r^{\epsilon_r} \rightarrow \infty$, which we may suppose to be the case. This completes the proof of Theorem 1.

THEOREM 2. A necessary and sufficient condition that the b's shall have a density is that (1) shall hold.

PROOF. The necessity is easily deduced from an old result. Davenport and I^2 proved that the logarithmic density of the *b*'s exists and has the value

$$\lim_{i\to\infty} \lim_{n\to\infty} \frac{1}{n} \sum_{j\leq i} \phi(n; a_j; a_1, \cdots, a_{j-1}).$$

Thus if the density of the b's exists, we obtain

$$\lim_{i\to\infty} \lim_{n\to\infty} \frac{1}{n} \sum_{j>i} \phi(n; a_j; a_1, \cdots, a_{j-1}) = 0.$$

This proves the necessity of (1).

The proof of the sufficiency is much more difficult. We have

$$B(n) = \sum_{a_i \leq n} \phi(n; a_i; a_1, \cdots, a_{i-1}) = \sum_1 + \sum_2 + \sum_3,$$

where \sum_{i} is extended over $a_i \leq A$, \sum_{i} over $A < a_i \leq n^{1-\epsilon}$, \sum_{i} over $n^{1-\epsilon} < a_i \leq n$. Here A = A(n) will be chosen later to tend to infinity with n. By the hypothesis (1) we have

(7)
$$\lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \sum_{3} = 0.$$

It follows from the earlier work² that if A = A(n) tends to infinity sufficiently slowly, then $(1/n) \sum_{1}$ has a limit, this limit being the logarithmic density of the *b*'s, and also

$$\lim_{j\to\infty}\bigg(\sum_{i\leq j}\frac{1}{a_i}-\sum_{i_1< i_2\leq j}\frac{1}{[a_{i_1},a_{i_2}]}+\cdots\bigg).$$

Thus the proof of Theorem 2 will be complete if we are able to prove that

688

(8)
$$\frac{1}{n}\sum_{2} = \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \sum_{A < a_i \leq n^{1-\epsilon}} \phi(n; a_i; a_1, \cdots, a_{i-1}) = 0.$$

We have

$$\phi(n; a_i; a_1, \cdots, a_{i-1}) = \phi\left(\frac{n}{a_i}, 1; d_1^{(i)} \cdots\right),$$

where

$$d_j^{(i)} = \frac{a_j}{(a_i, a_j)} \cdot$$

We shall prove that

(9)
$$\lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \sum_{d < a_i \leq n^{1-\epsilon}} \phi' \left(\frac{n}{a_i} ; 1; d_1^{(i)} \cdots \right) = 0$$

where the dash indicates that we retain only those $d_j^{(i)}$ which satisfy $d_j^{(i)} < n^{\epsilon^2}$. Clearly (8) follows from (9). (Since $n^{\epsilon^2} \rightarrow \infty$, not all the $d_j^{(i)}$ are greater than or equal to n^{ϵ^2} .)

We define $g_{\epsilon}(t)$ as before, with *n* in place of n_r and ϵ in place of ϵ_r . It follows from (5) and (6) that it will suffice to prove that

(10)
$$\lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \sum_{A < t_i \leq n^{1-\epsilon}} \phi^{\prime\prime} \left(\frac{n}{a_i} ; 1; d_1^{(i)} \cdots \right) = 0,$$

where $\phi''(n/a_i; 1; d_1^{(i)} \cdots)$ denotes the number of integers *m* satisfying

(11)
$$m \leq \frac{n}{a_i}; \quad m \neq 0 \pmod{d_i^{(i)}}, \quad d_i^{(i)} < n^{\epsilon^2}; \quad g_{\epsilon}(m) < n^{\epsilon/2}.$$

Consider the integers satisfying (11). They are of the form $u \cdot v$ where $u < n^{\epsilon/2}$ and all prime factors of u are less than n^{ϵ^2} , $u \neq 0 \pmod{d_j^{(0)}}$ for $d_j^{(0)} < n^{\epsilon^2}$, and all prime factors of v are greater than n^{ϵ^2} . We obtain by Brun's method³ that the number of integers $m \leq n/a_i$ with fixed u does not exceed $(n/u \cdot a_i > n^{\epsilon/2})$

(12)
$$c_4 \frac{n}{a_i u} \prod_{p < n^{q^2}} (1 - p^{-1}).$$

Thus the number N_i of integers satisfying (11) does not exceed

(13)
$$c_4 \frac{n}{a_i} \sum' \frac{1}{u} \prod_{p < n^2} (1 - p^{-1}) \ge \phi''(\frac{n}{a_i}; 1; d_1^{(i)} \cdots),$$

1948]

where the dash indicates that the summation is extended over the $u < n^{\epsilon/2}$, $u \not\equiv 0 \pmod{d_j^{(t)}}$, $d_j^{(t)} < n^{\epsilon^2}$ and all prime factors of u are less than n^{ϵ^2} .

We have to estimate $\sum N_i$. Put

(14)
$$\lim_{m\to\infty}\frac{1}{m}\phi\left(\frac{m}{a_i}\,;\,1;\,d_1^{(i)}\,\cdots\right)=t_i,$$

where in (14) all the $d_j^{(l)}$ are considered. (It follows from the definition of the $d_j^{(l)}$ that they are all less than *n*. Thus the limit (14) exists.) It follows from our earlier work² that

(15)
$$\sum_{a_i>A} t_i = o(1).$$

Next we estimate t'_i where

$$t'_{i} = \lim_{m \to \infty} \frac{1}{m} \phi(\frac{m}{a_{i}}; 1; d^{(i)}_{j}), \quad d^{(i)}_{j} < n^{\epsilon^{2}}.$$

Here we use the following result of Behrend⁵

$$\lim_{n\to\infty}\frac{1}{n}\phi(n;1;a_1,\cdots,a_i,b_1,\cdots,b_i)$$

$$\geq \lim_{n\to\infty}\frac{1}{n^2}\phi(n;1;a_1,\cdots,a_i)\cdot\phi(n;1;b_1,\cdots,b_i)\cdots.$$

Thus clearly

(16)
$$t'_{i} \leq t_{i} \left(\lim_{m \to \infty} \frac{1}{m} \phi(m; 1; x_{ir})^{-1} = t_{i}/t'_{i}, \right)$$

where x_i runs through the integers from n^{ϵ^2} to n. It follows from the Sieve of Eratosthenes that the density of integers with $g_{\epsilon}(m) = k$ equals

$$\frac{1}{k} \prod_{p < ne^2} (1 - p^{-1}).$$

Thus clearly

$$t'_{i}' \ge \sum_{k < n^{\epsilon^{2}}} \frac{1}{k} \prod_{p \le n} (1 - p^{-1}) > c_{\delta} \epsilon^{2}$$

or

(17)
$$t_i' \leq t_i/c_5\epsilon^2.$$

⁵ Bull. Amer. Math. Soc. vol. 54 (1948) pp. 681-684.

Thus from (15) and (17),

(18)
$$\sum_{a_i>A} t_i = o(1).$$

We have by the Sieve of Eratosthenes

(19)
$$t'_{i} = \frac{1}{a_{i}} \sum' \frac{1}{x} \prod_{p < n^{2}} (1 - p^{-1})$$

where the dash indicates that $x \neq 0 \pmod{d_j^{(i)}} d_j^{(i)} < n^{\epsilon^2}$ and all prime factors of x are less than n^{ϵ^2} . Comparing (13) and (19) we obtain

$$(20) N_i < c_4 t_i' n.$$

Thus finally from (10) and (18) we obtain $\sum_{a_i>A} N_i = o(n)$ which proves (10) and completes the proof of Theorem 2.

THEOREM 3. The density of integers having two divisors d_1 and d_2 with $d_1 < d_2 < 2d_1$ exists.

PROOF. Define a sequence a_1, a_2, \cdots of integers as follows: An integer *m* is an *a* if *m* has two divisors d_1 and d_2 with $d_1 < d_2 < 2d_1$, but no divisor of *m* has this property. To prove Theorem 3 it will be sufficient to show that the multiples of the *a*'s have a density. Thus by Theorem 2 we only have to show that (1) is satisfied. We shall only sketch the proof.

Clearly the *a*'s are of the form xy, where x < y < 2x. Thus it will be sufficient to show that the number of integers $m \le n$ having a divisor in the interval $(n^{1/2-\epsilon}, n^{1/2})$ is less than ηn where $\eta \rightarrow 0$ as $\epsilon \rightarrow 0$. But I proved that the density $c_{\epsilon,t}$ of integers having a divisor in $(t, t^{1+\epsilon})$ satisfies

$$\lim_{\epsilon\to 0} \lim_{t\to\infty} c_{\epsilon,t} = 0.$$

A similar argument will prove the above result, and so complete the proof of Theorem 3.

It can be shown that the density of integers having two divisors d_1 and d_2 with $d_1 < d_2 \le 2d_1$ and either d_1 or d_2 a prime exists and is less than 1. This result is not quite trivial, since if we denote by $a_1 < a_2 < \cdots$ the sequence of those integers having this property and such that no divisor of any a has this property, then $\sum 1/a_i$ diverges.

We now state a few unsolved problems.

I. Besicovitch¹ constructed a sequence $a_1 < a_2 < \cdots$ of integers such that no *a* divides any other, and the upper density of the *a*'s

1948]

is positive. A result of Behrend⁶ states that

(21)
$$\lim \frac{1}{\log n} \sum_{a_i \le n} \frac{1}{a_i} = 0$$

and I7 proved that

(22)
$$\sum \frac{1}{a_i \log a_i} < A$$

where A is an absolute constant. It follows from the last two results that the lower density of the a's must be 0. In fact Davenport and I² proved the following stronger result: Let $d_1 < d_2 < \cdots$ be a sequence of integers of positive logarithmic density, then there exists an infinite subsequence $d_{i_1} < d_{i_2} < \cdots$ such that $d_{i_j} | d_{i_{j+i}}$. Let now $f_1 < f_2 < \cdots$ be a sequence of positive lower density. Can we always find two numbers f_i and f_j with $-f_i \langle f_j$ and so that $[f_i | f_j]$ also belongs to the sequence? This would follow if the answer to the following purely combinatorial conjecture is in the affirmative: Let c be any constant and n large enough. Consider $c2^n$ subsets of n elements. Then there exist three of these subsets B_1 , B_2 , B_3 such that B_3 is the union of B_1 and B_2 .

II. Let $a_1 < a_2 < \cdots$ be a sequence of real numbers such that for all integers k, i, j we have $|ka_i - c_j| \ge 1$. Is it then true that $\sum 1/a_i \log a_i$ converges and that $\lim (1/\log n) \sum_{a_i < n} 1/a_i = 0$? If the a's are all integers the condition $|ka_j - a_s| \ge 1$ means that no a divides any other, and in this case our conjectures are proved by (21) and (22).

III. Let $a_1 < a_2 < \cdots \leq n$ be any sequence of integers such that no one divides any other, and let m > n. Denote by B(m) the number of b's not exceeding m. Is it true that

$$\frac{B(m)}{m} > \frac{1}{2} \frac{B(n)}{n}$$
?

It is easy to see that the constant 2 can not be replaced by any smaller one. (Let the *a*'s consist of a_1 and $n = a_1$, $m = 2a_1 - 1$.)

I was unable to prove or disprove any of these results.

SYRACUSE UNIVERSITY

692

⁶ J. London Math. Soc. vol. 10 (1935) pp. 42-44.

⁷ Ibid. vol. 10 (1935) pp. 126-128.