P. Erdös

On the uniform but not absolute convergence of power series with gaps

EXTRAIT DES »ANNALES DE LA SOCIÉTÉ POLONAISE DE MATHÉMATIQUE« T. XXV, ANNÉE 1952

KRAKÓW 1952 POLSKIE TOWARZYSTWO MATEMATYCZNE UL. SW. JANA 22

ON THE UNIFORM BUT NOT ABSOLUTE CONVERGENCE OF POWER SERIES WITH GAPS

By P. ERDÖS (London)

Hardy 1) was the first to give an example of a power series $\sum_{k=1}^{\infty} a_k z^{n_k}$ which converges uniformly in $|z| \leq 1$ but for which $\sum_{k=1}^{\infty} |a_k| = \infty$. Piranian asked me (in a letter) for what sequences of integers $n_1 < n_2 < ...$ does there exist a power series $\sum_{k=1}^{\infty} a_k z^{n_k}$ which converges uniformly in $|z| \leq 1$ but for which $\sum_{k=1}^{\infty} |a_k|$ diverges. In the present paper I shall prove the following

Theorem 1. Let $n_1 < n_2 < ...$ be a sequence of integers satisfying lim inf $n_n^{1/k} = 1$. Then there exists a power series $\sum_{k=1}^{\infty} a_k z^{n_k}$ which converges uniformly in $|z| \leq 1$ but for which $\sum_{k=1}^{\infty} |a_k| = \infty$.

The condition $\liminf n_k^{1/k} = 1$ can certainly not be weakened a great deal. In fact Zygmund²) proved that if $n_{k+1}/n_k > c > 1$, and if $\sum_{k=1}^{\infty} a_k z^{n_k}$ converges for all |z|=1 then $\sum_{k=1}^{\infty} |a_k| < \infty$. On the other hand both Piranian and I observed that $\liminf n_k^{1/k} = 1$ is not a necessary condition. In fact I shall prove that the following somewhat stronger result holds:

¹⁾ E. Landau, Neuere Ergebnisse der Funktionentheorie, p. 68.

²) Studia Math. 3 (1931), p. 77-91.

Theorem 2. Let $n_1 < n_2 < \dots$ satisfy

(1)
$$\liminf (n_j - n_i)^{1/j-i} = 1, \text{ where } j - i \to \infty.$$

Then there exists a power series $\sum_{k=1}^{\infty} a_k z^{n_k}$ which converges uni-

formly for
$$|z| = 1$$
 but $\sum_{k=1}^{\infty} |a_k| = \infty$.

It is clear that Theorem 2 is stronger than Theorem 1, since if $\liminf n_k^{1/k} = 1$ holds then $\liminf (n_j - n_i)^{1/j-i} = 1$ also holds (put $n_i = n_1$ and let $j \to \infty$).

It is not impossible that (1) is the necessary and sufficient condition for the existence of a power series $\sum_{k=1}^{\infty} a_k z^{n_k}$ which converges uniformly for $|z| \leq 1$ but $\sum_{k=1}^{\infty} |a_k| = \infty$.

We will prove Theorem 2 since the proof of Theorem 1 is not easier. The proof will use methods of probability theory and for this reason I am glad that the paper appears in a volume dedicated to Professor Steinhaus who has contributed so much to this subject.

It easily follows from (1) that there exists a sequence of indices satisfying

(2)
$$i_1 < j_1 < i_2 < j_2 < \dots, 3 < n_{j_l} - n_{l_l} < \exp(j_l - i_l/2^l), j_l - i_l = 2A_l - 1,$$

exp z denoting e^z . The condition that $j_i - i_l$ is odd is assumed only to make some of the later computations simpler. From (2) we have

(3)
$$2A_{l} = j_{l} - i_{l} + 1 \leqslant n_{j_{l}} - n_{i_{l}} + 1 < 2(n_{j_{l}} - n_{i_{l}}).$$

Further by (2)

(4)
$$j_l - i_l > 2^l$$
 or $A_l > 2^{l-1}$.

Define $a_k=0$ if k is not in any of the intervals $(i_l, j_l)_r$, l=1,2,..., and $a_k=(lA_{l/2})^{-1}$ if $i_l \leq k \leq j_l$. Denote by $r_k(t)$ the k-th Rademacher function.

We have
$$\sum_{k=i_l}^{j_l} a_k = 1/l$$
 hence $\sum_{k=1}^{\infty} a_k = \sum_{l=1}^{\infty} 1/l = \infty$. Therefore Theo-

rem 2 follows from

Theorem 3. For almost all t

$$f_t(z) = \sum_{k=1}^{\infty} r_k(t) a_k z^{n_k}$$

converges uniformly for $|z| \leq 1$.

In other words if $\varepsilon_k = \pm 1$ and the ε -s are independent of each other, then $\sum_{k=1}^{\infty} \varepsilon_k a_k z^{n_k}$ converges uniformly for almost all choices of the ε -s (since $\sum_{k=1}^{\infty} a_k = \infty$ Theorem 3 includes Theorem 2).

To prove Theorem 3 we need a few lemmas. First of all put

(5)
$$\theta_t^{(0)}(z) = \sum_{k=i_l}^{j_l} r_k(t) \, z^{n_k - n_{i_l}} = \sum_{k=i_l}^{j_l} \varepsilon_k \, z^{n_k - n_{i_l}}$$

By (5)

$$f_t(z) = \sum_{l=1}^{\infty} z^{n_{l_l}} \theta_t^{(l)}(z)/2lA_l.$$

The degree of $Q_t^{(0)}(z)$ is $n_{i_l} - n_{i_l}$ and it has $2A_l$ terms.

Lemma 1. Suppose $0 \leq b_i \leq 1$, and let $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m$ take on the values ± 1 in all possible ways (thus there are 2^m possible choices for the ε -s). Denote by g(m,r) the number of choices of the ε -s for which

(6)
$$\left|\sum_{i=1}^{m} \varepsilon_{i} b_{i}\right| < m - 2r + 1 \quad (if \ r > m/2, \ g(m, r) = 0)$$

 $(\min g(m,r) \text{ denotes the smallest possible value of } g(m,r)).$ Then

(7)
$$\min g(m,r) = {\binom{m}{r}} + {\binom{m}{r+1}} + \dots + {\binom{m}{m-r}}.$$

The Lemma means that g(m,r) is minimal if $b_i=1$, $i=1,2,\ldots,m$.

The lemma and its proof are due to Szekeres³). We use induction for m and r. We can assume without loss of generality that $b_1 \leq b_2 \leq ... \leq b_m = 1$ (for if $b_m < 1$, we replace b_i by b_i/b_m , i=1,2,...,m, and g(m,r) is clearly not increased). If

$$|\sum_{i=1}^{m-1} \varepsilon_i b_i| < m-2r+1$$

3) Written communication.

and $\varepsilon_m = +1$ we obtain (8) $-(m-2r+2) < |\sum_{i=1}^{m-1} \varepsilon_i b_i| < m-2r.$ If $\varepsilon_m = -1$ then (9) $-(m-2r) < |\sum_{i=1}^{m-1} \varepsilon_i b_i| < m-2r+2.$

From (8) and (9) we obtain that

(10) $\min g(m,r) \ge \min [g(m-1,r)] + \min [g(m-1,r-1)].$

Lemma 1 clearly holds for r=0 and any m, also it holds for m=1 and any n. Thus by (10) and a simple induction argument it holds for all m and r, which proves Lemma 1.

Lemma 2. Let $z_1, z_2, ..., z_{2m}$ be 2m complex numbers, $|z_l|=1$, i=1,2,...,m. Then the number of choices of the ε -s for which

$$\sum_{i=1}^{2m} \varepsilon_i z_i] \ge (2s+1) \sqrt{2}$$

is less than

$$8m \cdot 2^{2m} \exp\left(-\frac{s^2}{2m}\right).$$

Put $z_j = a_j + ib_j$. If

$$\left|\sum_{j=1}^{2m} \varepsilon_j z_j\right| \ge (2s+1) \sqrt{2}$$

then either

$$|\sum_{j=1}^{2m} \varepsilon_j a_j| \ge 2s+1$$
 or $|\sum_{j=1}^{2m} \varepsilon_j b_j| \ge 2s+1.$

By lemma 1 the number of solutions of

$$\left|\sum_{j=1}^{2m} \varepsilon_j a_j\right| \ge 2s+1$$

is less than or equal to

$$2^{2m} \min \left[g(2m, m-s) \right] = 2^{2m} - \binom{2m}{m-s} - \dots - \binom{2m}{m+s} = \\ = 2 \sum_{i=1}^{m-s-1} \binom{2m}{i} < 4m \binom{2m}{m-s} = \\ = 4m \binom{2m}{m} \frac{m(m-1)\dots(m-s+1)}{(m+1)(m+2)\dots(m+s)} < \\ < 4m \cdot 2^{2m} \prod_{i=1}^{s} \left(1 - \frac{2i-1}{2m} \right) < 4m \cdot 2^{2m} \exp(-s^2/2m).$$

Similarly the number of solutions in the ε -s of

$$\left|\sum_{j=1}^{2m} \varepsilon_j b_j\right| \ge 2s + 1$$

satisfies (11), which proves Lemma 2.

Lemma 3. For $l > l_0$

Prob
$$[\max_{|z|=1} |Q_t^{(0)}(z)| > ((2A_l+1)\sqrt{2}/l+\pi)] < 1/2^l.$$

In other words the measure in t of the set for which

$$\max_{|z|=1} |Q_t^{(0)}(z)| > (2A_l+1) \sqrt{2}/l + \pi$$

is less than $1/2^{l}$. Or in still other words: The number of choices of $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{2A_l}$ for which

(12)
$$\max_{|z|=1} |Q_t^{(0)}(z)| = \max_{|z|=1} |\sum_{k=i_l}^{j_l} \varepsilon_k z^{n_k - n_{i_l}}| > (2A_l + 1) \sqrt{2}/l + \pi$$

is less than 2^{2A_l-l} .

Put

$$\xi_{\mathbf{r}} = \exp{[2\pi r i/(n_{\mathbf{l}l} - n_{\mathbf{i}l})^2, \quad 1 \leqslant \mathbf{r} \leqslant (n_{\mathbf{l}l} - n_{\mathbf{i}l})^2.}$$

Thus ξ_r runs through the $(n_{j_l} - n_{i_l})^2$ -th roots of unity. $Q_t^{(0)}(\xi_r)$ is of the form $\sum_{l=1}^{2A_l} \varepsilon_l z_l$, $|z_l| = 1$. Thus lemma 2 can be applied and we obtain from Lemma 2 on putting $A_l = m$, $s = A_l/l$ that the number of choices of the ε -s for which

 $|Q_t^{(l)}(\xi_r)| > (2A_l+1) \sqrt{2}/l$

is less than

(13)
$$4A_l \cdot 2^{2A_l} \exp(-A_l/2l^2).$$

Therefore for $l > l_0$ by (12), (2), (3) and (4) the number of ε -s for which

(14)
$$\max_{1 \leq r \leq (n_{j_1} \cdot n_{l_j})^2} |Q_t^{(0)}(\xi_r)| > (2A_l+1) \sqrt{2}/l$$

166

is less than

$$4A_{l} \cdot 2^{2A_{l}} (n_{ll} - n_{ll})^{2} \exp(-A_{l}/2l^{2}) <$$
(15) $< 2^{2A_{l}+2} (n_{ll} - n_{ll})^{3} \exp(-A_{l}/2l^{2}) <$
 $< 2^{2A_{l}+2} \exp(3A_{l}/2^{l-1}) \exp(-A_{l}/2l^{2}) < 2^{2A_{l}+2} \exp(-A_{l}/4l^{2}) < 2^{2A_{l}-l}.$

In the last two inequalities of (15) we used the facts that for $l > l_0$ $3/2^{l-1} < 1/4l^2$, and that for $l > l_0$ by (4)

$$A_l > 2^{l-1} > 4 l^2 (l+2).$$

Now let z_0 be any point on the circumference of the unit circle. Clearly

(16)
$$\min_{1 \leq r \leq (n_{j_l} - n_{i_l})^2} |z_0 - \xi_r| < \pi/(n_{j_l} - n_{i_l})^2.$$

~ .

Further

(17)
$$\max_{|\boldsymbol{x}|=1} |(Q_t^{(l)}(\boldsymbol{z}))'| \leq \sum_{\boldsymbol{k}=i_l}^{I_l} (n_{\boldsymbol{k}} - n_{i_l}) < (n_{j_l} - n_{i_l})^2.$$

From (16) and (17) we see that if

$$\max_{1 \leq r \leq (n_{j_l} - n_{i_l})^2} |Q_t^{(l)}(\xi_r)| \leq (2A_l + 1) \sqrt{2}/l$$

then

(18)
$$\max_{|z|=1} |Q_t^{(l)}(z)| < (2A_l+1) \sqrt{2}/l+\pi.$$

The formulae (15) and (18) imply that the number of choices of the ε -s for which (12) is not satisfied is less than 2^{2d_l-l} , which proves Lemma 3.

Now we can prove Theorem 3. Since $\sum 1/2^{t} < \infty$ it follows from Lemma 3 and the Borel-Cantelli lemma that for almost all t

(19)
$$\max_{|z|=1} |Q_t^l(z)| \leq (2A_l+1) \sqrt{2}/l + \pi$$

except possibly for a finite number of l-s (these l-s of course may depend on t). Let t_0 be any real number for which (19) is false for only a finite number of l-s, and let $l_1 = l_1(t)$ be such that (19) holds for $l > l_1(t)$. We shall prove that $f_{t_0}(z)$ converges uniformly for $|z| \leq 1$. Let $k_1 > n_{l_1}$, assume that $n_{i_2} < k_1 < n_{j_2}$. We shall show that for $|z| \leq 1$

(20)
$$\left|\sum_{\boldsymbol{k}=\boldsymbol{k}_{1}}^{\infty}r_{\boldsymbol{k}}(t_{0})\,a_{\boldsymbol{k}}z^{\boldsymbol{n}_{\boldsymbol{k}}}\right| < \frac{8}{\lambda}\,.$$

(20) clearly implies the uniform convergence of $f_{t_0}(z)$.

We evidently have for $|z| \leq 1$

(21)
$$\left|\sum_{k=k_{1}}^{\infty} r_{k}(t_{0}) a_{k} z^{n_{k}}\right| \leq \sum_{k=k_{1}}^{n_{j_{k}}} |r_{k}(t_{0})| a_{k} + \sum_{l=\lambda+1}^{\infty} |Q_{l_{0}}^{(0)}(z)|.$$

But (19) holds for $l > l_1$; hence from (21) and the definition of a_k and $f_{t_0}(z)$

$$\left|\sum_{\boldsymbol{k}=\boldsymbol{k}_{l}}^{\infty} r_{\boldsymbol{k}}(t_{0}) a_{\boldsymbol{k}} z^{n_{\boldsymbol{k}}}\right| \leq \frac{1}{\lambda} + \sum_{l=\lambda+1}^{\infty} \left(\frac{(2A_{l}+1)}{2A_{l}l^{2}} + \frac{\pi}{2lA_{l}}\right).$$

But by (4) $A_l > 2^{l-1}$. Thus

$$\left|\sum_{k=k_{1}}^{n} r_{k}(t_{0}) a_{k} z^{n_{k}}\right| < \frac{1}{\lambda} + \sqrt{2} \sum_{l>\lambda} \frac{1}{l^{2}} + \sqrt{2} \sum_{l>\lambda} \frac{1}{2^{l}} + \pi \sum_{l>\lambda} \frac{1}{2^{l}} < \frac{8}{\lambda}.$$

Thus Theorem 3 and therefore Theorems 1 and 2 are proved.

This method can also be applied to entire functions. We can prove the following

Theorem 4. Put

$$f_t(z) = \sum_{k=0}^{\infty} r_k(t) \, z^k / k \, !$$

Then for $r > r_0(t)$ and almost all t

$$M_r(f_t) < \frac{e^r}{r^{i_{f_t}}} (\log r)^{c_t} \quad [M_r(f_t) = \max_{|z| \le r} |f_t(z)|]$$

and for a sequence $r_n \rightarrow \infty$ and almost all t

$$M_{r_n}(f_t(z)) > \frac{e^r}{r^{1/4}} (\log r)^{c_2},$$

where $0 < c_2 < c_1$ are suitable constants.

We do not give the details of the proof.

University College, London

Krakowska Drukarnia Naukowa