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A PROBLEM ON ORDERED SETS 

P. ERD~S am? R. Root. 

[Extra&d jrm the Journal of the London Math.ematical Society, Vol. 28, 1953.] 

1. Let S be an ordered set, of power 1 SI and order type 8 = 4, We 
denote by #* the converse of 4, i.e. the order type obtained from + by 
replacing every order relation x < y by the corresponding relation y < x, 
and by wrc the least ordinal number of power N,. It is easy to see that, 
if ISl=tQ, then S contains a subset S’ such that either s’ = w,, or 
8’ = w**. For cardinals N, > w’. the corresponding property, with o,, 
replaced by o,, no longer holds. Thus, the linear continuum C, ordered 
by magnitude, satisfies ] C I= Wm >, ~~ but contains no subset of any of 
the types o,, o,*. If, however, we assume the continuum hypothesis 
PO = No, then 112 = 1, and the following statement is true. Given any 
ordinal a < ol, there are subsets Cl and C, of C, of order types a and CC* 
reqmtively. 

The question arises whether not only C but every ordered set S of 
cardinal ~~ contains either (i) a subset of type wl, or (ii) a subset of type 
0~8, or (iii) two subsets of types cc and cc* respectively, corresponding to 
every ordinal cc < wl. We shall show, assuming the continuum hypothesisf 
and making free use of the axiom of choice, that this is, in fact, true. More 
generally, we shall obtain, as principal result of this note, a simple character- 
ization of those cardinals ~~ which possess the following 

Property P. If S is an ordered set, 1 SI = N,, and EC is an ordinal 
number, cc < wR, then either (i) there is S’ c S such that ?4’ = w,, or 
(ii) there is S” c S such that $“’ = on*, or (iii) there are subsets S, and S, 
of S such that A!?, = a ; A$ = CL*. 

We denote, for any cardinal number a, by a- the immediate predecessor 
of a provided that such a predecessor exists, and we put a- = a in all other 
c&ses, i.e. when a is a limit number. We recall that a is called Singular 
if a can be represented in the form a = ;T, aP, where 1 B I< a ; a, < a, and 

PER 
regu.lar if no such representation exists. 

We shall prove the following 

THEOREM. Suppose that the generalized continuum hypothesis 

aN”==v+l holds for every v. Then a cardinal nuxnber N, p.sseasee the 
property P if, and only if, N; is regui!izr. 

In fact, the continuum hypothesis is not required for the proof that 
P does not hold when N; is singular, and for the proof of the converse 
proposition it is only required for v < n, 

7 Received 16 July, 1952; read 20 November, 1952. 
2 See addendum. 
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Since ~~~ (= ~~+n~+ . . .) is singular, the theorem asserts, for instance, 

that N~~+~ possesses the property P, and that neither ~,,,+i nor No@ 
possesses that property. 

J. C. Shepherdson (1) has investigated the structure of ordered sets 
which contain only well-ordered subsets of given types. His methods 
and results do not appear to have any direct connection with the problem 
considered in the present paper. He has, however, informed us that he 
has since proved that p;)i has the property P, and W. Sierpmski has 
obtained the more general result that every ordered set of cardinal Hi 
contains a subset of one of the types oi, ui*, 7, where 7 is the order type 
of the set of rational numbers ordered by magnitude. 

Notation and definitions. 

2. Small Greek letters denote order types, i.e. ordinal numbers as well 
as order types of sets whose brder is not a well-order. Small Latin letters 
are used to denote either ordinal numbers or cardinal numbers as well as 
elements of abstract sets. Instead of order type, ordinal number, and 
cardinal number we say type, ordinal, and cardinal respectively. We need 
not distinguish between a finite ordinal and tbe corresponding finite cardinal. 
The relation 8’ c S denotes set inclusion in the wide sense. 

If the set S is ordered by the order relation z ( y then the type of S 
is denoted by gK, and, if there is no risk of confusion, by i% If a second 
ordering of the same set has to be introduced the new order relation will 
be denoted by < < and the new order type by g, <. If #= u, then we 
de&e the cardinal ) M ) of ot by putting ) 01) = 1 S 1. The relation fi < cc 
means that, if #= tc, then there is S’ c S such that B’ = j3. The relation 
/3 $ GC means that the relation /3 < tc is false. It is worth noting that a set 
T of types is not ordered, in the strict sense of the word, by our relation 
“ < “, but that only a quasi-ordering? is defined in T, which means that 
the relation “ < ” between types is transitive but that there may be two 
distinct types cc and fi satisfying both /3 < e and u < /3. If, however, a is 
an ordinal, then j3 < tc implies that /l is an ordinal, and in this case the two 
relations 6 < a ; ct<p only hold if a=& 

If B, = 4, and if the relation “ < < ” is the converse of the relation 

‘( =c “3 so that x < < y is equivalent to y < x, then B, < is the converse of 
4 and is denoted by #3. Clearly $, j* < cr* holds if, and only if, p < c(. 

The property 9 is equivalent to the following 

Prqerty P’. If I$ I= n, ; cc < ua, then either o,* < 4 or o! < 4. 

t I% P- 4. 
$ This is contrary to the convention used in (I), p. 292, where, in the case o iordin& 

o and & the relation ,6* < a* is taken to be equivalent to oc < 8. 
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For, first of all, suppose that N* has property P. Let IdI= No, 

E<%, and consider an ordered set S such that B = +. Then (i) of 
property P implies q < 4 and hence cc < 4, {ii) of property P implies 
mn* < 4, while (iii) of property P implies GI < 4. Therefore P implies P’. 

On the other hand, suppose that P’ holds for some N,. Let 1 S I= H,, ; 
B,=$; El<<= $*. Then, by applying the definition of P’ to both the 
types, 4 and $*, we find subsets S’ and S” of S such that 

either sl, = wn* or R!! = u (1) 

and either IT<, = Lo,* or s,: < = u. (2) 

Now, (1) implies that 

either ~0,~ < 4 or u <+, (3) 

and (2) implies that 

either wh* <tj* or ci < $*. (4 

By combining, in the four possible ways, one alternative of (3) with one 
of (a), we find that, in any case, 

either (i) 0, <(b or (ii) w,* < I# orp (iii) K, CtQ < C#, 

so that N, satisfies P. 

3. The description of our arguments is greatly simplified by the intro- 
duction of the decompogition relation 

a+ (b,, b,Y 

between cardinals a, b,, b, which will now be defined. For any set S we 
denote by Q,(S) the set of all sets S’ c S such that 1 AS” I= 2. Then we say 
that (5) holds if, and only if, the following statement is true. Whenever 

ISl=a; Q*(S) = G+g2, 

then there is 8’ c S and he(1, 2} such that 

IS’{ = b,; cJ,(S’) c I&. 

The relation (5) is fundamental in many investigations in set theory. 
The authors hope to deal in another paper with its numerous interesting 
properties and generalizations. In the present note it only serves as a 
convenient abbreviation. Clearly, (5) is equivalent to 

t The relation a, a* S; +, and eimibrly in other cases, zuem18 that both, a < cp and 
a* 6 $, hold. 
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Proof of the negative part of ihe Theown. 

4. We begin by proving two lemmas. 

LEMMA 1. If k, n > 0, and act, < ofi for v <ok, then-f 

* %a 2 ok+1 Q xv < Ok 0 a,*. 

Proof. Put s = Ix;;:; D((v, X)}. We order S by putting 

(v, A) -=c lv’, w 

if, and only if, either (i) v < V’ or (ii) v = v’ ; ;\ > It’. Then 

23=IzV<-cJj~*=#, say. 

--I If s’cs; s =“,kfl then, for every va < ok, 

lW*, ms’O(h)( <%J, 

and hence IS’I <:vVg<Wk@*=NkNg=Mk, 

which is the desired contradiction. 
On the other hand, if S” c S ; S”= w,* then 

IW, ~W”UiV}J <%Jo, 

and therefore, for some finite number of ordinals vk, 

I 8” 1 f z 1 a2 I< wp, 

which, again, is a contradiction. This proves Lemma 1. 

5. Let a = N, and b = No be infinite cxdinals. We denote by FaQ 
the set of all functionsf(X), defined for X < q, whose functional values are 
ordinals f(A) < w,. We order Fab alphabetically, i.e. we put fi <fi if, 
and only if, there is h,, <q such thatf,()l) =f&) for )I c 4 ; fi(&,) <f&J. 

LEMMA 2. Let a= N,, awl let b = No be the least card&ml szsch thut 
aa > a. Then co&, w,+~ < paa. 

P~ooj‘, The letter h denotes ordinals, h < o,, and F = F’,p 

(i) Let P'cF; F=w,+~. We have to deduce a contradiction. 
Let f~ F’. We define a function 7(f) E F as follows. In P’, f has an 
immediate successor o(f) = g, say. Then there is &,=&U(f) such that 
f(N=g@) for A<&,; f&l <g&). N ow we put 7(f) = h, where h(h) = g(h) 

t For typographical convenience we write Xv< wk[la.* instad of Zukxn*, csnd simi- 

larly in other CBBBB, where the sign [] i8 used to sepamti the summation conditions from 
the terms to be summed. 
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We conclude that 1 P’ 1 < 1 F” 1, w h ere F” is the set of all functions j(h) 
such that, for some x =x(j) < wI, j(h) < ogn for X <x, and j(h) = 0 for 
X > 1. Hence, using the minimum property of b, 

a<IF’I,<IF”I=~~<o,OalXl=~~<w,Oa=ab=a, 

which is the desired contradiction. The last equation follows from the 
fact that aa > a, so that b <a, 

(ii) Let F’CF; ~=w&. Then there is J’, E O’, for ,u < w~+~, such 
that fp >.fv for p < v < o~+~. The letter p always denotes numbers such 
that p < UQ+~. We define, inductively, numbers T;(A) as follows. Let 
A, < wI, and suppose that F(A) has already been defined for h < A,, and 
that, for A < A,,; p a?(A), we have 

cu4 =fiicuW (7) 

Then =4,UIiW)l ~‘lh,l~ <b, 

and hence there is p0 such that $[A) < p0 for X < &,. Then 

f,@)=f,,O) for A-c&; p>h, 

and f,,(h,) >f,,,(&), if p0 <pl <pa. Hence, by the definition of well- 
ordering, there is j+,) 3 p0 such that (7) holds for A = A,, ; p 3 j&IO). 
This completes the inductive definition of F(X) such that (7) holds for 
h < UJ~; p >j2(A). Then 

LkwI~~ji()o[ <bb=b, 

and hence there is p3 such that p(A) < ,u~ for all h < wI. Then, for all X < w,, 
f,,(X) =fF,+l(X), so that f,, =J@~~+~, which is a contradiction. This proves 
the lemma, 

6. We can now prove the negative part of our theorem. Let us assume 
that N; is singular. 

Case 1. Let N;=H%. Then N~=~v<o~[]N~,, where k<n; 
m, <n. Then, by Lemma 1, CO%*, u $4, where 

K=W~+l<W,; +=~<OJ~~W~~; I$I=“n. 

Hence M, does not possess the property P’. 

t The symbol [fi, f,}< denotes the set {fi,fi) and, at the same time, expresses the 
factI that fl < & A similar notation is used in other oases when.sets and relations between 
the elements of these sets are to be exhibited. 
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Case 2. Let H; = H, < fin. Then n. = m + 1, and a = k?o, is singular. 
There is a representation a = E v ~iV[a,, such that INI, a, -=c a. Then, 
by Kijnig’s Theorem, a < II v E NO Q = @I, and if b = ~~ is the least 
cardina.1 satisfying ab > a, then b < 1 iV j < a ; I < m. Now, by Lemma 2, 

we have o&, c++* 4 F&, and hence w,*, CL 4 +, where $ = (F&)*, 

I+I=ab>a=NN,; I$I>nti; “=w~+l<o~. 

Again, it follows that N, does not possess the property P’. 

The CaSe of a limit number No. 

7. Throughout the rest of this paper we assume the generalized 
continuum hypothesis, i.e. the equation 

for all v. 

LEMMA 3. Let a be a regular limit cadinal, and b < a. Then. a+ (6, a)a. 

Proof. Let 1 S I= a; Q,(&‘) = HI+&,. Suppose that, 

if Sr’CS; C&(S’)cK, then jS,I<a. (8) 

Our aim is to find a set S” c 1.9 such that 

sz,(s”)cK,; )S”I=b. (9) 
Corresponding to every set T C‘S we choose a see B(T) such that 

(i) B(T) c T, (ii) CJ2, (B( T)) C x2, (iii) for fixed T the set B(T) is maximal 

among all sets U c T such that sZ,( U) CR,. The existence of such a 
set B(T) follows from Zorn’s Lemma, We choose a fixed ordinal p(O) 
such that (p(O) ( > ( 8 1, and we agree that the letters )1, cd, v always denote 
ordinals less than p(O). 

We well-order 8. For all v and all 2 ES, we defke f”(g) 1 S as follows. 
Let 2 be fixed, and suppose that, for some v,, the elementsj&) have already 
been defined for v < vo, and that 

for all those v < v, for which f&z) # z. We shall now define f.,(x,. 

Case 1. Suppose that f&z) #x for v < v,. Then we denote by 8, 
the set of all y E S such that 

{,ft@), y}E& for v < vo. 

Thus zr 13,. 

There are now two possibilities. Firstly, if 2 E B(S,), we putf*,(x) = 2. 
Secondly, ifz # B(S,), then, by part (iii) of the dekition of B( T), there is a 

first element x of B(S,) such that (z, z] ERR. Then we put f”,(z) = z. 
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Cease 2. Suppose that there is a number v < v0 such that fV(z) = 2, 
Then we put &(x) = 2. This completes the deikrition, by transflnite 
construction, of elements f”(z), for Y < $0) and x E S, such that 

w4:), f”t4)~J-G (10) 
if p < v <p(O); f,(x) # 2. 

Since [p(O)/ > ISI, ‘t 1 is impossible that, for some fixed x, all Jpy(x) are 
different from each other, and hence it is impossible that, for some fixed x, 
f&z) fx for all V. Hence there is i@) such that f&r) # x for v < t;(x), 
and fy(x) = x for v 2 S(x). We put M,, = Xx ES [(f&)}. We shall show 
that, if Iv1 <a, 

IKI <a. (11) 

First of all, JY, C B(S), and hence, by (8), jMol <\IB(S)I <a. Thus (11) 
holds for v = 0. Now let 0 < 1 v3 1 < a, and suppose that (11) holds for 
v < v,. Corresponding to every z E S there belongs a system of elements 

yv =f&4 tv -=c ~3). Th e number n of distinct systems yy arising in this way 
satisfies 

n<rh<v,[lp”I. 

Now, since a is a regular cardinal, 

ZZvvv3nlMvI=d<a. 

A. Tar&j- proved that, for every regular limit cardinal a, and a,, a2 < a, 
we have a? < a. By applying this result to a, = d, a, = jv3j, we obtain 

12 < &I < a. (12) 

It follows from (8) and the definition of fyg(x) that, given any system of 
elements & E S (V < vJ, the cardinal of the set of all elements fy3(z) corres- 
ponding to x’s such that J,(x) = gy for all u < v3, is less than a, i.e. that 

1 WV(x) = ii for all v e v3 0 (fva(x)} 1 < a. 

By (12), the number of distinct systems Gy (v < v3) which need be considered 
is also less than a. Hence MY8 < uu = a. This shows that (11) holds for 
all Y such that I VI < a. Then, in view of the regularity of a, 

I~$~bc]{f&4}I <~lvl <bnlJM,[ <a= Ifl[, 
and therefore there exists &,E S such that 

ii0 #fJx) for I~l<b; xES. 

In particular, !Eo #$,(5,) for ] v I < b. Put 

S” = X 1 v I< b fl (j’v(~o)). 

Then (9) follows from (10). 

t (3), S&z 9. 
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8. We shall now prove the positive part of the theorem in the case 
when N, is a regular limit number, so that N; = N,. This number will 
be fixed throughout the proof. Our aim is to establish, for CI < w,, the 
following 

PRoPosI!rIow Q,. If 14 1 > M,, then either wn+ < 4 or u< 4. 

For if this is shown then N, possesses the property P’ defined in $2, 

and this was seen to be equivalent to N, possessing the property P defined 
in the introduction. 

Let 6 c w,, and assume that Q, is true for a < fi but that i& is false. 
We shall deduce a contradiction. Clearly, /3 > o,,. 

We suppose then that there is an ordered set X0 such that 1 S,,] > N,, 

f%*> /w al. (13) 

Then n > 0. Let S be the set of all sections L of S,, i.e. of all subsets L 
of S, such that x < y E L implies x E L. We order S by inclusion, i.e. we 
put L<L’if,and onlyif, Lc#L’. Then ISI>,IS,I>N,. Forevery 
non-empty subset S’ of S we denote by 

bd’LES’[ L, bdLES’~ L (14 

the intersection and the union respectively of all sets L E S’. Then the 
two sets (14) are elements of S. We have 

w,*, /ws. (16) 

For We* < S would imply the existence of a system L, E S (v < w,) such 
that L,c#L, for ~<v<o~. Then we could choose a, EL,-- L,+l and 
find that? 

wn* = n@ v < q& 0 {G>, < &lo, 

which contradicts (13). Similarly, /l< S would imply the existence of 
L,‘E S (” < ,9) such that L,’ c # L,’ for p < v <B. Then, choosing 
a”’ E L:+, - L,‘, we Grid 

p= Q@v<pD{a,‘))<~*, 

again a contradiction against (13). This proves (15). 

For the rest of this proof the letters 2, y, x denote typical elements of S. 
Ifs<ythenweputz=$!if,andonlyif, 

l~X\<~<Yll{4I <% 

and we defme the relation y G x to be equivalent to x = y. Then “ = ” is 
an equivalence relation. Let xP (p E R) be a system of representatives of 

t Occmiomlly we write Tp(U) instertd of 0. 
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the corresponding equivalence classes, so that, given any x, there is 
exactly one PE B such that z G x,,. Put 

y,=mx~x,~x; ypl ==~X~XJ-JX. 

Then yp Es yp’ E xp. (16) 

For, first of all, let us assume that, for some p, yp f xp, Then xp < yp. We 
define, inductively, elements z, as follows, Put zU = q,. If v < CO%, and if 
z, has already been defined for p < v, such that 

xp<zZr~xi for ~(v, 

then we conclude from 1 PI ( N, ; X~G z,, and the regularity of N,, that 

~~~,~z,~~~z,n~z~~<~~=l~~~<~<Y~n~~~l~ 

and hence that there exists z, such that xp < z, < yp, 

z, < 2, for p < v. 

Then, by definition of yp, there is x’ E q, such that q, <x, <x1, Then, by 
definition of ” E “, we have z, E xp. This completes the construction of 
x, for all v < wit. We have, however, 

q= q-q~v<w,~(z,))<~ 

which, in view of /3 < w,, contradicts (16). 
For reasons of symmetry, the assumption ypl $ x+, would lead to CO,* < $ 

which, again, contradicts (15). Hence (16) holds. 
Let the letters p and u denote typical elements of R. Clearly, 

[RI <lfJl=~,. Also, 

I~x=~p:pOxll= lx:yp’ <z <.<pU(z}I < %a IPER)- 

If, now, 1 RI c N,, then we obtain, since N, is regular, 

Is/=~czY,‘$z~Y~~~~~~i~,, 
P 

which is false. Hence 1 RI = N,. We well-order R, by means of a relation 
<‘ < < “, and put? 

Q,(R) = &+K,, (17) 

where R, is the set of all {p, o>< such that xp < < x,, and Kz is the set of 
all {p, a>< such that zp >> x,. Since H, is a limit cardinal > No and 

B<% there is m < 12 such that ,9 < CO,. Now, by applying Lemma 3, 
with a = N, ; b = No, we find a set R’ C R such that either 

/R’]=N,; MR’)C~l (18) 

or ~R’/=N~; Q,(R) CK,. (19) 

t This idea of dHkGng a decomposition of n,(B) by means of two order relations nn 
R was first used by Sierpiriski. 
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If (19) holds then, in view of the definition of X,, 

w,* d qJ (q-J E R’ n {q?>, < p 

which contradicts (15). Hence (18) holds. The ordering of S induces 
an ordering of the set of all x,,, for p E R’, and we may put 

~~pER’~{Xp)=~v<Vg~{xY’}, 

where v,, 2 om, and x+’ < x,’ whenever p < Y < vs. Let 

s, = r, x,’ < z < x:+1 0 (2) (v < co,)’ 
Then, by definition of “ = “, 1 S, 1 > N,, 

We can write 

~o<M.<~~{M)=I;v<w,~(cc,), 

where the cc, are not necessarily mutually distinct. Since Qol holds for 
CC <p, there is S,’ c S, such that 

i7”’ = cc,, 

~~~vY<opn[IM,=~~(I;v~~wwr~s”‘)~~, 

which contradicts (15). This completes the proof of the theorem in the 
case when N, is a limit number. 

H, not a limit number. 

9. For any cardinal a, we denote by a+ the next larger cardinal. 

LEMMA 4. If a > No, and b is the least cardinal such that ab > a, then 
a+ -+ (b, t~+)~. 

Proof. The proof is similar to that of Lemma 3. Let 

ISI =a+; WS) = K,SJL 

and suppose that 

whenever S’ C S ; Q,(S’) C K,, 

then 1 S’ ( < a+. I 
(20) 

Our aim is to find a set S” c S such that 

!&(X’)cK,; IS”I =b. (21) 

We well-order S, and we choose B(T), p(O) and define f”(x) aud NV exactly 
as in the proof of Lemma 3. Then, for 1 VI < b, 

WI <a. (22) 

For, Mot B(S), and hence, by (20), 1 MO1 <a. Let 0 < 1~~1 <b, and 
suppose that (22) holds for v < ~a. Then the number @ of distinct systems 
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of elements f”(z) (V < ~a) satisfies, in view of 1 va I< b and the minimum 
property of b, 

n\<~v<<V3~IM,I~u’“~‘~~‘ (23) 

It follows from (20) and the definition offy, (x) that, given any ?jV E S (y < ~a), 
the cardinal of the set of all elements f”,(x) such that!“(z) = !jy for all v < v,, 
is at most equal to a. Thus, for fixed g,, 

I W4 = il. (v -c 4 0 (f&)1 I < a. 

Hence, in view of (23, 
IM,] <aa==. 

This establishes, by induction, the inequality (22) for all v such that 1 v 1 < b. 
Using b <a, which follows from aa > a and the definition of b, we 

conclude that 

I%%~:<s”~(f&d)I <WI d[lMvI ,<ba,<a<ISI, 

and hence deduce the existence of 5, ES such that Z0 #f&r) for 1 v 1 < b ; 
z&S’. Then the set 

S”=W -4lifw6,)) 

satisfies (21), and Lemma 4 is proved. 

10. We shall now prove the positive part of the theorem in the case 
when N; = N, is regular, n = mf 1. We note that N, is regular. The 
proof is identical with that of 0 8 up to the definition of the decomposition 

(17)‘ 
It follows from results of A. Tarskit that, if a is regular and a1 <: a, 

then aal ,< a. Hence, applying this result to a = N,, we find that the 
cardinal b of Lemma 4 is equal to a, so that, by Lemma 4, 

1 RI = fi, -+ Mm, Q2. 

By applying the information contained in this relation to the decomposition 
(17) we find that there is a set R’ c R such that 

either I R’( = No; Sl,(R’)cK, (24 

or p?I=Nn; Q,(R) c &. (25) 

But (25) implies that, by definition of K2, 

on* d QGP E R’ D {q}, < s, 

which contradicts ( 15). Hence (24) holds. The rest of the argument is 
again identical with that used in $8, from the point onwards when (18) 

had been established. This completes the proof of the theorem. 

f (3), Sratz 9 and Sate 13, for limit numbers a. For non-limit numbers the statement 
if4 trivial. 
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11. We shall now prove the following results which show that Lemma 4 
is best possible. 

If a > N,,, and b is the &?a& cardinal such that ab > a, then~ 

a+ + (b, a+)2, (26) 

a+ -j+ (b-f-, a+)2, (27) 

ab -I* (bf, a+)2. w3) 

One of us4 has proved, assuming, as we do in the present note, the 
generalized continuum hypothesis, that 

fJ++ --f (a?-, d++)2 (29) 

for d 2 No. This result is equivalent to the special case of (26) when a 
is not a limit number. For if a = df > N,, then ad = (2d)d = a, so that5 
the cardinal b in (26) is equal to a, and (29) is the same as (26). 

In order to prove (26)-(28), we note that (28) implies (27), and that 
(26) is Lemma 4. There remains the proof of (28). We define m, I and 
Fab = F as in Lemma 2, and we denote by R: < y the order relation in F 
defined in Q 5. Let x < < y be a well-ordering of 3, and put 

Qn,(F) = &+R,, 

where R, is the set of all sets {x, y)< = {x, y>,, c F, and R, is the set of 
all sets {x, y>< = {z, y)<< c S’. We have /PI = ub, If (28) were false 
then we could llnd F’ c F such that 

either IP’I =b+; Q,(F')cK, 

or jF'f=a+; sz,(F’) c K,. 

But (30) would imply that 

u&G P)i< = m< d m,, 
and (31) that 

(30) 

(31) 

%a+1 < w<< = (a, B @‘)< 

which, in either case, contradicts Lemma 2. 

12. It is easy to obtain from the argument leading to Lemma 2 some 
more information about the order type p = @),. Let S be any ordered 
set of type #. We define the Lusin index A(+) of + as the least cardinal n 

t We denote by (27) the negation of the relation a+ + (b+, u+)~, and Bhdtbrly in the 

cage of (28). 
$ (4), Theorem II. 
5 More generally, for any a > No, b is the least cardinal such that a ia representable 

as a mm of b cadin& less than Q (Taxski). 
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which has the property that it is impossible to find n mutually non-over- 
lapping open intervals in S, which means that, whenever R is a set, 

1 RI = n, and {q,, yp}<c S for p E R, then there is {p, u}+ c R such that 

Xp<Xo.<Yp* Then we have the following result. 

Let a 3 N,,, and let b be the least cardinal such thut a6 > a. Then, if 
Pa, is the order type deJined in fs 5, A(pab) = a+. 

The proof may be left to the reader. 

Added in proof. L. Gillman has since proved that the generalized 
continuum hypothesis Bi “ 2Hs = N,+~ for all Y ” is necessary for the 
truth of the assertion of our theorem, so that H is equivalent to the 
statement: N, has the property P if, and only if, N; is regular. 
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