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1. Suppose that an n-dimensional cube of volume V is covered by a
system ofm equal spheres each of volume J, so that every point of the cube
is in or on the boundary of one at least of the spheres . The density of the
covering is defined to be mJ/V, that is, the ratio of the sum of the volumes
of the spheres to that of the cube . The main object of this note is to show
that 6*, the lower limit as V tends to infinity of the density of such a covering,
satisfies

t9'* > 13-en,

	

( 1 )
where en ->0 as n-->oo . Bambah and Davenport$ have recently considered
the similar lower limit t/', defined as above but with the additional restriction
that the centres of the spheres should form an n-dimensional lattice . They
proved that > 9-en,
where en-,,. 0 as n-+ oo .

Our method is very similar to that of Bambah and Davenport ; both
methods are based on the following construction . Suppose that the whole
of n-dimensional space is covered by equal spheres S . Corresponding to

t Received 13 February, 1952 ; read 14 February, 1952 ; revised 2 July, 1952 .
1 R. P. Bambah and H . Davenport, Journal London Math . Soc ., 27 (1952), 224-229 .
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each sphere S construct the convex polyhedron H consisting of all points
which are as near or nearer to the centre of S as they are to any other centre .
These polyhedra obviously fit together and cover the whole of n-dimensional
space simply ; each point of space either lying in the interior of just one of
the polyhedra or being common to the boundaries of two or more of the
polyhedra . Further it is clear that each polyhedron is contained in the
corresponding sphere. Both proofs split into two stages . First it is
shown that no polyhedron has too many faces . Then it is shown that if a
polyhedron with not too many faces is inscribed in a sphere, the volume of
the polyhedron is less than that of the sphere by a certain factor . It then
follows immediately that the density of the covering is not less than the
reciprocal of this factor .

We remark that Bambah and Davenport make use of their assumption
that the centres of the spheres form a lattice, in both parts of their proof .
We do not make this assumption, and in the first part of our proof we can
only obtain a relatively poor upper bound for the number of faces of the
polyhedra . However for the second part of the proof we use a recent result
of Rogerst showing that their inequality I holds without making use of the
condition (derived from the assumption that the centres of the spheres
form a lattice) that the foot of the perpendicular from the centre of the sphere
to each face of the polyhedron falls inside the face. We shall need the
result in the following form .

LEMMA 2. Let V (II) be the volume of a convex polyhedron with N faces
inscribed in an n-dimensional sphere of unit radius and volume

~,n/2
Jn- P(I+in)'

n
>

	 dt	Then	 J
V(II) ~

i
o {1-Ca(1-ts)ln /2 '

where

	

2S= 1'

	

NJ,,-,n

	

'n 1

If n and N tend to infinity in such a way that N 11n tends to a limit A, then the
upperr limit of V(II)/Jn is less than or equal to 1-a-2.

Since Rogers' proof is rather complicated (probably unnecessarily so)
for sake of completeness we give in § 3 a simple proof of a slightly weaker
result and show that it leads to the result that

t * >

	

En,

	

(2)

where En->- 0 as n ->. co .

t C. A . Rogers, Journal London Math. Soc ., in course of publication .
Loc. cit., inequality ( 1 4).
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The problem of finding more precise estimates for the upper bound of
the ratio V(H)/J,, when n and N are large seems to be difficult . It is
probable that the estimate given by the above lemma is far from best
possible . It would also be of interest to show that given n and N one can
construct polyhedra for which the ratio V(II)/Jn is reasonably large . We
have not been able to obtain a result significantly better than the following
result, which may be obtained by considering coverings of the surface
of a sphere by spherical caps . If

N >
nJn 2(n-1)/2 ,
Jn-1

then there is a n-dimensional polyhedron II with N faces inscribed in the
unit sphere and with volume V (H) satisfying

VJ. > [1-2 (NJ.-,
)2/(n-1)]n

.

2 . Let r and e be given positive numbers . Then, by the definition of
6*, if s is a suitable large number, there will be a cube C of side (8+2r+2)
and volume (s+2r+2)n which is covered by a system of less than

( 1 +e) 0* sn/Jn.

spheres of radius 1 . Now consider a movable sphere S(X) of radius r+1
and volume (r+ 1)n Jn whose centre X lies in a cube C' of side s and volume
sn concentric with C . Let m(X) be the number of those spheres of radius 1
covering C whose centres lie in S (X ) . Then the integral of m (X) over
C' is clearly equal to the sum of the volumes of the intersection with C'
of spheres of radius (r+1) concentric with the spheres covering C . So
this integral is less than

(1+e)t9* sn (r+ 1 )n ,

and consequently we can choose a sphere S(X 1 ) of radius r+1 contained
in C which contains less than

(1+e)t$*(r+l )n

of the centres . Let So be the concentric sphere of radius r . Now every
point of So belongs to at least one of the spheres of radius 1, and can only
belong to those of the spheres whose centres belong to S(X 1 ). Hence
the sphere So of radius r is covered by less than (1+e)$*(r-}-1)n spheres
of radius 1 . Now it follows by continuity considerations that any sphere
of radius r can be covered by some system of not more than z * (r+ 1)n
spheres of radius 1 .

Let R be any positive number and consider a cube C of side 3R+4.
Let N be the positive integer such that C cannot be covered by N-1
spheres of unit radius but is covered by a certain system of N spheres S of
unit radius. We take r to be any number with 0 < r < R and consider
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any sphere S' of radius r whose centre lies in the cube with side R concentric
with C. We prove that the number m of those of the spheres S of unit
radius covering 0, which have a point in common with S', is at most

>9'* (r--3)4 .

It is clear that all these spheres S which have a point in common with S'
lie in the sphere 8" of radius r+2 concentric with S'. Now the result of
the last paragraph shows that S" can be covered by not more than ,9* (r+3)n
spheres of unit radius . So the cube C can be covered by not more than

,3* (r+3)n+ (N-m)

spheres of unit radius, namely the spheres covering S" and the spheres S
having no point in common with S' . Hence by our choice of N we have

m <0*(r+3)n

and our assertion is proved .
Now it is clear that if we let R tend to infinity and use an appropriate

diagonal process we can construct a covering of the whole of n-dimensional
space by spheres of unit radius having density &* and having the property
that for each r > 0 the number of spheres of the system having a point in
common with a sphere of radius r is not more than ,&*(r+3)n .

[We remark that so far we have not made much use of the fact that
we are concerned with coverings of space by spheres ; the whole of the above
argument applies, with only trivial modifications, to coverings of space by
congruent and similarly situated symmetrical convex bodies .]

We consider this system of spheres S of unit radius covering n-dimen-
sional space. For each sphere S we take II to be the convex polyhedron
consisting of all points which are as near or nearer to the centre of S as
they are to any other centre of one of the spheres of the covering . Then
each point of space lies either in the interior of just one of the polyhedra or
on the common boundary of two or more of the polyhedra . Now since each
point of space is within unit distance of the nearest centre, it is clear that
each polyhedron II lies within the corresponding sphere S . Thus each face
of one of the polyhedra II arises as the perpendicular bisector of the segment
joining the centre of the corresponding sphere S to the centre of some other
sphere of the system . To different faces of II correspond in this way
different spheres of the system having the different faces in common
with S . Hence by the result of the last paragraph, with r = 1, we see that
II has at most 0* 4n-1 faces . Thus, if N is the integral part of &* 4n-1,
and VN is the volume of the largest polyhedron having N faces which
can be inscribed in an n-dimensional sphere of unit radius, we have
VII) < VN. Since the density of the covering by the spheres of volume
J,, is t9' * while that of the covering by the polyhedra of volume not more
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than Vv is 1, it is easy to see that

,$* > Jn/Vr. .

	

(3)

In order to prove the result (1) of § 1 it clearly suffices to suppose that
for some e > 0 we have

d* < 11156(1- e)

	

(4)

for infinitely many n and to obtain a contradiction . By virtue of (4) it is
clear that Ni/n --> 4 as n tends to infinity through this sequence of values
of n. So using Lemma 2 we have

VN 1-(~)2
Jn < 1-e

for all sufficiently large n of the sequence, contrary to (3) and (4) . This
completes the proof.

3 . In this section we prove a weak form of Lemma 2 and indicate how
it leads to the inequality (2) . We first prove an elementary result .

LEMMA 1 . Let F be a closed convex (n-1)-dimensional set lying in the
unit sphere S. Let P be the pyramid with vertex 0 and base F, and let P* be
the set of all points of S which lie on the same half ray through 0 as some point
of F . Then the volumes V and V * of P and P* are connected by the inequality

V* > V[1-CS]-1/2,

	

(5)

2

	

nVS _ - n-1' C - Jn_1

Proof. Let r be the distance from 0 of the point 0' of F nearest to 0 .
Then since F is convex it is easy to see that F is contained in the sphere
with centre 0' and radius X/(1-r2) . So, if A is the (n-1)-dimensional
area of F and h is the perpendicular distance from 0 to the space in which
F lies, we have

Jn_1(1-r2)(n-1)/2 > A = h > nV .

Hence

	

r < r1- (	 nV ) 2/(n-1)]1/2 = [1-CS]1/2 .
L

	

Jn-1

Now let 0" be the point on the boundary of S on the line 00' produced .
The spherical pyramid P* clearly contains both the pyramid P with
vertex 0 and base F and the pyramid with vertex 0" and base F. Thus

V*>V+1r!V=
I
V>V[1- Ca]-112,

where

as required .
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We use this result in conjunction with a method of Bambah and
Davenport j' to prove the following weaker form of Lemma 2 .

LEMMA 2A. Under the conditions of Lemma 2 we have

V ((H)
> x/(11 Ca) ,

	

(6)

and the upper limit of V(II)/J,, is less than or equal to t/(1-A -2 ) .

Proof. Suppose that II is a convex polyhedron with N faces and volume
V(II) inscribed in the unit sphere S. We may clearly suppose that II is
placed in S so that it contains 0 . Let V1 , . . ., VN be the volumes of the
pyramids P1 , . . ., PN with 0 as vertex having the faces F1 , . . ., FN of II
as their bases . Then clearly

N
V(II)= E V, .

V=1

Let V1 *, . . ., VN* be the volumes of the spherical pyramids P 1*, . . ., PN*
consisting of those points of S which lie on half rays from 0 which meet
the faces F1 , . . ., FN . Then we have

Nin
=
V
(S) = E V,* .

V-1
By Lemma 1 we have

V*	 Jn-1C,,
> n -%/(1-C,a)'

8= n 21 '
C,=

Jn-1

(7)

where

The mean value C of C 1 , . . ., CN is given by
1 N

	

1 N nV, _ nV(II)C=- EC= E
N 1 v N Y=1 Jn 1 NJn 1

The right-hand side of (7) is clearly a convex increasing function of C, .
Hence by Jensen's inequality

N
	 NJJn - E V,* >	n_ 1 C

-1

	

n 1/( 1-Cd )
in	1		

( 8 )Thus s

	

V(II) > 1/( 1- Cs) ,
and the first part of the lemma is proved .

Now suppose that n and N tend to infinity so thatNI1 n tends to a limit A .
Suppose, as we may, that

Jn/V(II) <K.

t Loc. cit., §3 .
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where K is independent of n. Then

	 nJn

	

nV(II) _

	

nJn
KNJn_1 CNJ.-, C < NJ.-,

So Ca converges to A-2 as n tends to infinity and the right-hand side of (8)
converges to 1/\/(1-A-2) . This proves the second part of the lemma .

It is clear that the result (2) may be deduced from Lemma 2A in just
the same way that the result (1) is deduced in §2 from Lemma 2 .

University College,
London .
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